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ABSTRACT 
 
 
 

Three Essays on Energy Policy, Climate Change, and Economic Development 

 

 

By 
 

Soonpa Hong 
 
 

(Chapter 1) 

Renewable energy (RE) electricity plays a crucial role in addressing climate change but has 

limitations, such as intermittent production, high costs, and site constraints. South Korea 

transitioned its RE support system from a feed-in tariff (FIT) to a renewable portfolio standard 

(RPS) in 2012. This study evaluates the impact of the FIT-to-RPS transition on cost reduction for 

non-photovoltaic RE technologies (RETs), i.e., onshore wind power, bioenergy power, small 

hydropower, and fuel cell power, using a learning curve model. The results indicate that the FIT-

to-RPS transition did not have a significant positive impact on cost reduction for onshore wind 

power, bioenergy power, or small hydropower, as the results show negative learning rates (LRs) 

during both FIT and RPS periods. The analysis suggests that the positive learning effect was 

hindered by the gradual depletion of sites favourable to RE power plants as more RE power plants 

were installed. However, fuel cell power, which is not affected by land availability, increased the 

LR from 1.4% to 3.5%.  

This study has policy implications, such as improving excessive regulations and procedures that 

hinder the installation of RE power plants on sites with good condition. 

 

(Chapter 2) 

Economic growth, CO2 emissions, and energy mix are interrelated, and their relationship has been 

analysed using various dynamic models. The Vector Autoregressive (VAR) model, treating all 

factors as endogenous, has been commonly used to study this relationship. However, reduced form 

VAR, which do not account for contemporaneous effects, may misrepresent the impact of energy 

policies. In contrast, the Structural VAR (SVAR) model which include contemporaneous effects, 

provide a more accurate evaluation of energy policy impacts. This study applies both reduced form 

VAR (IRF) and SVAR (OIRF) to South Korea and Japan. The IRFs from reduced form VAR 

indicate that in South Korea, the electricity mix does not causally affect CO2 emissions, while both 



 

 

fossil fuel and renewable electricity positively affect CO2 emissions in Japan. However, OIRFs 

from SVAR reveal that fossil fuel electricity significantly increases CO2 emissions in both 

countries, while renewable electricity significantly reduces emissions in Japan. These findings 

suggest that SVAR provides a more accurate assessment of energy policies' environmental impacts 

than reduced form VAR, warranting caution with VAR results. 

 

(Chapter 3) 

This study examines the impact of the energy mix and economic growth on CO2 emissions in 12 

countries with nuclear power plants and 10 countries without, among OECD members, from 1971 

to 2021, utilizing a dynamic panel ARDL model. The findings support the Environmental Kuznets 

Curve (EKC) hypothesis in countries with nuclear power but not in those without. Replacing fossil 

fuel electricity (FE) with renewable electricity generation (RE) or nuclear energy generation (NE) 

significantly lowers CO2 emissions in both groups in the long-run, and RE proves more effective 

than NE in nuclear-powered nations. Moreover, substituting FE with RE shows greater emissions 

reduction in countries lacking nuclear power plants. While trade openness has insignificant effect, 

population growth exerts a notable influence in both groups. To check the robustness of the ARDL 

results, same ARDL model with sub-sample group was also conducted, and the analysis of the sub-

sample group shows similar results to those of the original ARDL results. The policy implications 

are that economic growth contributes to emissions reduction in the long-run for countries with 

nuclear energy, but this benefit is absent in countries without nuclear power, stressing the need for 

additional policy measures to curtail emissions.  
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(Chapter 1) Comparing Feed-in Tariff and Renewable Portfolio Standard in South 

Korea: Cost Reduction Impact on Non-Photovoltaic Renewable Electricity 

 

  



2 

 

1 Introduction 

Climate change is emerging as one of the most critical types of risk worldwide and thus 

requires a global response [1,2]. To address climate change, greenhouse gas reduction is 

crucial and greenhouse gases are largely generated in the energy sector [3]. Expanding the 

use of renewable energy (RE) in the energy sector is an important policy task for reducing 

of greenhouse gas emissions. Compared with fossil fuel technology, RE technologies (RETs) 

have several advantages such as reducing greenhouse gas emissions, decreasing pollutant 

emissions, and promoting the growth of new energy industry. However, there are various 

constraints on the expansion of RE, including high costs compared to fossil fuels, site 

constraints, and intermittent production [4]. 

To promote the expansion of RETs, governments have formulated and implemented various 

RET deployment and support policies [5]. In the field of electricity, the most representative 

systems for promoting RET electricity (RET-E) are feed-in tariff (FIT) and renewable portfolio 

standard (RPS). RE support policies can be considered within the broader category of 

energy policies, and the fundamental goal of energy policies in South Korea is to enhance 

energy security [6]. Energy security can be defined as the sustainable supply of a large 

amount of energy at an affordable price with little impact on the environment [7,8]. RE 
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support policies must address the dual challenge of subsidizing the high costs associated 

with RETs, a known drawback, while also ensuring affordable energy prices from an energy 

security perspective. Therefore, an ideal RE support policy is one that deploys more RETs 

at low costs. The deployment of RETs at a low cost is crucial for reducing financial burdens 

and ensuring sustainable deployment. South Korea implemented FIT from 2002 to 2011 

and transitioned to an RPS system in 2012. The FIT-to-RPS transition aimed to generate 

more RET-E at a lower price, essentially aiming to achieve grid parity at a more rapid pace. 

FIT and RPS systems are differentiated as price- and quantity-based schemes, respectively. 

Many countries have operated FIT or RPS systems, and there have been ongoing theoretical 

and empirical discussions comparing their effectiveness [9-16,4]. Unlike most other 

countries, South Korea’s use of both FIT and RPS systems makes it a valuable subject for 

empirical analysis1. The impact of the FIT-to-RPS transition on the achievement of the grid 

parity of photovoltaics has already been studied [4]. Hong et al. [4] reported that the RPS 

system is much more effective than the FIT system in achieving grid parity for photovoltaics; 

the learning rates for photovoltaics during the FIT and RPS periods were -0.28% and 

 

1 To the best of my knowledge, as of now, South Korea and Japan are the only countries which 

have undergone a comprehensive and decisive transition from FIT to RPS system or, conversely, 

within their RE support systems. 
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18.44%, respectively. Meanwhile, the current research focuses on examining how the 

transition has affected non-photovoltaic RETs, namely, onshore wind power, bioenergy 

power, small hydropower, and fuel cell power, in terms of reducing the cost of RET-E 

generation. In this analysis method, a learning curve model is used; notably, with the 

cumulative increase in deployment or capacity, the average cost decreases due to learning 

effects. By calculating the learning rate (LR), we can determine how quickly the average 

cost decreases. If the LR differs between the FIT and RPS scheme periods, it is possible to 

assess which scheme is more effective at reducing costs. 

The results of the analysis indicate that for fuel cell power, the RPS system has a significant 

effect on cost reduction compared to the FIT system, which is consistent with the analysis 

results for photovoltaics of Hong et al. [4]. However, for onshore wind power, bioenergy 

power, and small hydropower, the RPS system does not demonstrate clear superiority over 

the FIT system in terms of cost reduction; the learning rates for the three RETs were 

negative during both the FIT and RPS periods, which is not consistent with the analysis 

results for fuel cell power and photovoltaics [4].  

This study also explores the reasons behind these different results for fuel cell power and 

the other three RETs, and policy implications are derived accordingly. One significant reason 
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is that in the case of onshore wind power, bioenergy power, and small hydropower, as 

more RE power plants are installed, sites with good conditions for RE generation are 

becoming scarce, thereby making cost reductions more challenging. In response, regulatory 

improvements are recommended to alleviate land availability constraints for RE power 

plants as a policy implication. 

This study contributes significantly to the literature by empirically comparing the effects of 

FIT and RPS systems on the non-photovoltaic RETs, utilizing the case of South Korea where 

both systems have been implemented. The effectiveness of the two systems is compared 

in an empirical context, thereby contributing to academic discussions and providing 

policymakers with crucial insights into the effects of both systems. 

Figure 1 shows the electricity mix in South Korea in 2011 and 2020. It is evident that from 

2011 to 2020, the proportion of ‘renewable and waste’ electricity increased significantly 

from 2% to 7%. Moreover, an examination of the composition within the 'renewable and 

waste' electricity category shows that between 2011 and 2020, the proportion of electricity 

generated from photovoltaic and bioenergy sources significantly increased, totalling 47% 

and 22%, respectively. 

The rest of this study is structured as follows. An overview of the FIT and RPS schemes in 
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South Korea is provided in Section 2, a literature review is provided in Section 3, and the 

methodology and data are explained in Sections 4 and 5, respectively. The results and 

corresponding discussion are presented in Section 6, and the conclusions and policy 

implications are provided in Section 7. 

 
(a) Electricity mix in 2011 

 
(b) Electricity mix in 2020 

 
(c) Composition of renewable & waste 

electricity in 2011 

 
(d) Composition of renewable & waste 

electricity in 2020 

Figure 1 Electricity mix in South Korea (source: OECD) 

 

2 Overview of the FIT and RPS schemes in South Korea 

South Korea, which imports all petroleum and natural gas, introduced the FIT scheme in 

2002 to enhance its energy security by expanding the deployment of RE [17]. The FIT 
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scheme is a price-based approach in which the government sets the price (i.e., standard 

price) for RET-E. Based on this fixed price (standard price), the deployed quantity of RET-E 

is determined by the market. The government purchases RET-E at the standard price for 

15 years. While the amount of RET-E generation is market driven and inherently uncertain, 

the advantage lies in the stability given by the fixed price, i.e., the standard price, which 

enables RE project developers to reliably install RE power plants. Meanwhile, depending 

on the type of RETs and the location of deployment, the government differentiates the 

standard prices of RET-E to encourage the deployment of less economically viable RET-E 

(Figure 2). The government sets the standard price of RET-E to be higher than the 

anticipated electricity market price (i.e., system marginal price (SMP)) and periodically 

adjusts it to account for cost fluctuations due to technological advancements and other 

factors such as policy objectives. Since 2008, South Korea's FIT scheme has faced significant 

financial burdens for photovoltaic deployment, and the deployment rate of RETs under the 

FIT scheme had been very low. Therefore, continuing the FIT scheme was deemed 

unsustainable. Consequently, in 2012, South Korea transitioned to an RPS scheme based 

on competition among different RET types [18]. 
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Figure 2 Standard prices for RETs in the FIT scheme as of 2007 (source: Korea New and Renewable 

Energy Center (KNREC)) * Note: Small hydropower represents the ‘1-5 MW’ category. Photovoltaics 

represent the ‘30-200 kW’ category. SMP_high: highest SMP during 2003-2007. SMP_low: lowest 

SMP during 2003-2007. 

 

The RPS scheme is a quantity-based system in which the government sets the amount of 

RET-E, and the market determines its price. Therefore, while the quantity of RET-E may 

remain stable, the fluctuating prices can negatively impact the investment environment 

necessary for the stable development of RE power plants. Under the RPS scheme, RE power 

plants are issued renewable electricity certificates (RECs) equivalent to the amount of 

renewable electricity they generate. These certificates can be sold in the REC market to 

generate additional revenue (Figure 3). Essentially, RE power plants earn revenue by selling 

renewable electricity in the electricity market and their corresponding RECs in the REC 
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market. 

 

Figure 3 Transaction cost (or transaction revenue) of RET-E under the RPS scheme 

 

Since the RPS scheme promotes competition among different RET types, deploying high-

cost RETs, such as photovoltaics and fuel cell power, can be challenging. This may lead to 

a concentration on economically viable RETs. To address this issue, South Korea's RPS 

scheme sets a separate quota for photovoltaics, issuing distinct RECs for photovoltaic and 

non-photovoltaics RET-E. This results in different REC markets and prices for the two types 

of RET-E, ensuring a balanced deployment of photovoltaics2 . To mitigate excessively 

different economic viabilities among RET types and to induce the deployment of 

environmentally friendly RET-E, a weighted REC allocation system (a multiplier system) has 

also been implemented.  

 

2 The separate REC market system for photovoltaics was abolished in 2016, after which the REC 

markets were unified. 
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3 Literature review 

3.1 Comparison of the FIT and RPS schemes 

There have been numerous empirical and theoretical comparative studies of the 

effectiveness and impact of FIT and RPS schemes. The FIT scheme, with its fixed tariff for 

the long-term purchase of RET-E, is recognized for creating a stable investment 

environment and, ultimately, deploying a larger amount of RET-E at a lower cost compared 

to the RPS scheme [15, 19-20]. The FIT scheme is considered advantageous for promoting 

immature RETs such as photovoltaics. However, there have been criticisms regarding 

government intervention in pricing RET-E and the yearly instability of the amount of RET-

E deployment, as noted by Pyrgou et al. [21] and Hong et al. [4].  

The RPS scheme is praised for enhancing cost reductions through competition among RETs 

and allowing for market-determined prices, thus providing basic flexibility in terms of 

pricing [13, 22]. García-Álvarez et al. [23] analysed the performance of the FIT and RPS 

schemes in promoting onshore wind power in the EU and concluded that only the FIT 

scheme and its design elements influence the installed capacity of onshore wind power. 
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Xin-gang et al. [24] analysed the FIT and RPS schemes in China from the perspective of 

achieving grid parity in RE, suggesting that under an FIT scheme, neither solar nor onshore 

wind power may reach grid parity, whereas under an RPS scheme, onshore wind power 

can achieve grid parity, but solar power may require additional subsidies. Yu et al. [25] 

examined the impact of RPS and FIT schemes on the interregional power transmission line 

layout in China and proposed that an increase in RPS targets may lead to an increase in 

the number of newly built lines, while the continuation of FIT subsidies beyond 2020 may 

decrease the level of demand for new line construction. 

Research has also been conducted to analyse the performance of the FIT and RPS schemes 

in South Korea. Choi et al. [26] compared the outcomes of the FIT scheme implemented 

before 2011 with those of the ongoing RPS scheme since 2012 and concluded that from 

the government's perspective, the RPS scheme is more efficient for photovoltaic energy, 

while the FIT scheme is more efficient for non-photovoltaic RETs such as wind power. From 

the perspective of energy producers, the FIT scheme is more efficient for photovoltaic 

energy, but the RPS scheme is more efficient for non-photovoltaic RETs. Kwon [16] 

suggested that an improperly designed RE support system can provide excessive profits to 

RE operators. Kown [16] analysed South Korea's FIT and RPS systems, and noted that the 
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FIT scheme offers more rent for photovoltaic RET-E, while RPS provides more rent for non-

photovoltaic RETs. Hong et al. [4] used a learning curve model to empirically analyse which 

scheme—FIT or RPS—is more effective in achieving grid parity for photovoltaics in South 

Korea, finding that in the RPS period, the LR for photovoltaics was 18.44%, while in the FIT 

period, it was negative (-0.28%), demonstrating the superiority of the RPS scheme in terms 

of achieving grid parity for photovoltaics.  

The current research is closely related to Hong et al.’s research [4]. However, unlike Hong 

et al. [4], who focused on photovoltaics, the current research explores the impact of the 

FIT and RPS schemes on non-photovoltaic RETs, such as onshore wind power, bioenergy 

power, small hydropower, and fuel cell power. 

Studies comparing the effects of FIT and RPS schemes on the promotion of RET industries 

also exist. Yi et al. [27] analysed the contributions of FIT and RPS schemes to the 

development of China's photovoltaic industry and concluded that the RPS scheme 

promotes long-term and rapid development more effectively than does the FIT scheme. 

Similarly, in the context of China's biomass industry, Yu-zhuo et al. [28] reported that 

compared with FIT, RPS contributes to faster long-term development. In addition to studies 

directly comparing the effectiveness of FIT and RPS schemes, studies have explored how 
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the design elements of each system influence their effectiveness [29-30,23]. 

 

3.2 Learning curve effects for energy technologies 

In the learning curve model, for each doubling of the total quantity of products produced, 

the average unit cost decreases by a fixed proportion, called the learning rate (LR). This 

concept is often used in economics and business to describe the relationship between 

learning or experience and performance or productivity. 

Technological learning, or the learning effect, is generally classified into five types: learning-

by-doing, learning-by-researching, learning-by-using, learning-by-interacting, and 

economies of scale [31-33]. Arrow [34] initially introduced learning-by-doing, referred to 

as the one-factor learning curve (1FLC) model, in which the LR is derived from cumulative 

capacity or production. In addition to the 1FLC model, a two-factor learning curve (2FLC) 

model that considers not only accumulated capacity but also accumulated research exists 

[35-36].  

Many scholars have applied learning curve models to analyse energy technologies. Rubin 

et al. [37] analysed research results and calculated the LRs of 11 electricity supply 

technologies, including fossil fuel, nuclear, and RETs. They noted significant differences in 
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LRs among the same energy technologies across various research outcomes, suggesting 

the need for systematic studies when analysing policy effects. Moreover, studies that 

estimate the LRs for emerging technologies, such as carbon storage, batteries, electrolysis, 

and fuel cell electric vehicles, across different scenarios have been conducted [38-41]. These 

studies predicted future price reductions with increased production volumes. 

Egli et al. [42] calculated LRs using data from photovoltaics and onshore wind projects in 

Germany, reporting LRs of 5% and 24%, respectively. They expressed sceptical opinions 

regarding the phasing out of policy support for such projects. 

Hong et al. [35] derived the LR of photovoltaic generation in South Korea using the 1FLC 

and 2FLC models, empirically verifying the cost reduction effect of R&D investment. Kittner 

et al. [36] derived a stable solar power generation path with solar power at $1 per watt 

and battery storage at $100 per kWh using 2FLC model for energy storage batteries. Wei 

et al. [43] calculated the LRs of six energy-related technologies and argued that deployment 

programmes can alter the shape of the learning curve, inducing changes such as 

downwards bending, depending on the deployment programme utilized. 

 

4 Methodology 
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The FIT-to-RPS transition represents a significant shift in the deployment programme for 

RET-E in South Korea. As described in Figure 4, the difference in the cumulative amount 

of RET-E generation under the FIT and RPS schemes leads to varying unit costs of RET-E 

generation under each scheme due to the learning curve effect (① in Figure 4). This 

learning curve effect is a natural outcome that occurs as the volume of deployment 

increases. On the other hand, the change in the LR is a consequence of the programme 

shifting from an FIT scheme to an RPS scheme (② in Figure 4). When assessing the 

effectiveness of a programme transition in terms of cost reduction for RET-E, attention 

should be focused on the shift of the LR, as indicated by ② in Figure 4. 

 

FIT → RPS 

① Change in cumulative amount 

Learning curve effect 

② Change in LR 

Change in unit cost 

Figure 4 Two channels of the effect of the FIT-to-RPS transition on the decrease in the unit cost 

of RET-E generation (modified from Hong et al. [4]) 
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This research focuses on how the LRs of four types of RETs, namely., onshore wind power, 

bioenergy power, small hydropower, and fuel cell power, changed after shifting from the 

FIT scheme to the RPS scheme in South Korea. A 1FLC model is employed to calculate the 

LR for each FIT and RPS scheme in this research. 

Equation (1) provides a description of the 1FLC model: 

𝑈𝐶𝑡 = 𝐶0 ∙ (𝐶𝑈𝑀𝑡)𝑎     (1) 

Let us consider onshore wind power generation. 𝑈𝐶𝑡 represents the unit cost of generating 

onshore wind power, 𝐶0 denotes the initial cost of onshore wind power generation, and 

𝐶𝑈𝑀𝑡 indicates the cumulative amount of onshore wind power generation. While the 

learning curve model requires the use of cumulative installed capacity data of onshore 

wind power as an explanatory variable, cumulative generation data are used in this research. 

This is because the focus of this research is on generation rather than installed capacity, 

and obtaining quarterly data on the installed onshore wind power capacity is very 

challenging in practice. Many studies have also chosen to use cumulative power generation 

as the explanatory variable when estimating the LR of RETs. [44-49,35,4]. In this work, 𝑡 is 

the given time, and 𝑎 is the learning index related to the progression rate (PR) and LR: 

𝑃𝑅 =  2𝑎     (2) 
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𝐿𝑅 = 1 − 𝑃𝑅 = 1 −  2𝑎    (3) 

PR and LR represent the change and reduction in unit cost, respectively, when cumulative 

onshore wind power generation doubles.3 To calculate '𝑎', Equation (1) is transformed into 

a logarithmic scale, resulting in Equation (4), which is a linear function, as illustrated in 

Figure 5: 

ln 𝑈𝐶𝑡 = ln 𝐶0 + 𝑎 ∙ ln 𝐶𝑈𝑀𝑡          (4) 

With empirical data for 𝑈𝐶𝑡  and 𝐶𝑈𝑀𝑡 , ‘𝑎 ‘ in Equation (4) can be obtained through 

regression analysis. 

 

(a) Linear scale learning curve from Equation (1) 
 

(b) Log-log scale learning curve from Equation (4) 

Figure 5 Examples of learning curves (modified from Kahouli-Brahmi [32]) 

 

3 For instance, if the PR is 0.8, then the unit cost decreases to 80% when the amount of cumulative 

onshore wind power generation doubles. Similarly, with an LR of 0.2, or 20%, the unit cost decreases 

by 20% when the amount of cumulative generation is doubled. 
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5 Data 

5.1 Period and RETs of analysis 

The data analysis period spans from 2002 to 2020, during which the FIT scheme was 

implemented from 2002 to 2011, and the RPS scheme has been in place since 2012. To 

employ regression analysis for calculating the LR, more than 30 samples are needed in 

each scheme to ensure statistical significance. The amount of annual data available in each 

scheme is insufficient for ensuring statistical significance. Consequently, quarterly data 

rather than annual data are used for modelling. The analysed RETs are onshore wind power, 

bioenergy power, small hydropower, and fuel cell power4. 

5.2 Amount of RET generation during the FIT and RPS scheme periods 

The data for this learning curve model are obtained from the KNREC and the Korea Power 

Exchange (KPX), which have authority over the deployment and management of RET-E in 

South Korea. The detailed description of the amount of RET generation is in Appendix B. 

5.3 Unit price of RET-E generation during the FIT and RPS scheme periods 

 

4 In fact, fuel cell power is not a type of RET. Moreover, in South Korea, it is classified under the 

category of 'new energy technology'. Through the FIT and RPS schemes, new energy technologies, 

such as fuel cell power, have also been receiving support. 
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The most accurate variable for measuring the LR is the production unit cost. However, 

obtaining the production unit cost is challenging because it is closely associated with a 

company's operational strategy. Therefore, in this research, as in other studies, unit price, 

which is easier to obtain than unit cost, is used instead [4,35,44-48,50].  

To derive the unit price, transaction cost data for RET-E are obtained from the KNREC and 

KPX. To account for the deflation effect over time, the data for each year are adjusted 

using the gross domestic product (GDP) deflator (2015=100) from the Korean Statistical 

Information Service (KOSIS). The quarterly data regarding the deflation-adjusted 

transaction costs of RET-Es, along with the cumulative data, are detailed in Appendix C.  

From the cumulative amount of RET-E in Figure B (b) and the cumulative transaction cost 

of RET-E in Figure C (b), we can calculate the unit cost5. 

Consequently, we can generate a plot of the unit cost versus cumulative power generation, 

as shown in Figure 6 and a log-log scale learning curve plot of the cumulative amount of 

RET-E generation versus unit cost, as shown in Figure 7. 

 

 

5 Strictly speaking, this is the unit price. However, in this study, we calculate and use the unit price 

as a substitute for unit cost, and thus, we continue to use the term 'unit cost’. 
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(a) Onshore wind power generation 

 

(b) Bioenergy power generation 

 

(c) Small hydro power generation 

 

(d) Fuel cell power generation 

Figure 6 Unit cost versus cumulative power generation 
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(a) Onshore wind power generation 

 

(b) Bioenergy power generation 

 

(c) Small hydro power generation 

 

(d) Fuel cell power generation 

Figure 7 Learning curves for the FIT and RPS scheme periods on a log-log scale  



22 

 

6 Results and discussion 

In Figure 7, onshore wind power, bioenergy power, and small hydropower exhibit similar 

curve shapes. However, fuel cell power displays a significantly different pattern from those 

of the other three RETs. The learning curve shapes for onshore wind power, bioenergy 

power, and small hydropower do not exhibit a linear pattern, and the estimated regression 

lines display positive slope values, indicating negative LRs. Despite the increase in 

cumulative generation, these three RETs do not exhibit a clear learning effect of a decrease 

in the unit cost. Instead, the unit costs show trends of increasing or remaining stable.  

Figure 7 displays the log-log scale learning curves for the four RETs, and the estimated LRs 

for the FIT and RPS scheme periods are presented in Table 1.  

According to Table 1, regardless of the FIT-to-RPS transition, onshore wind power, 

bioenergy power, and small hydropower have negative LRs. Additionally, the adjusted R2 

values of the estimated regression equations for onshore wind power, bioenergy power, 

and small hydropower, except for the FIT period for onshore wind power (0.930), are less 

than 0.7, indicating relatively weak explanatory power. 
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RET Period Estimated regression equation Adjusted R2 LR 

Onshore wind 

power 

FIT ln 𝑈𝐶𝑡 = 3.583∗∗∗ + 0.091∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.930 -6.5% 

RPS ln 𝑈𝐶𝑡 = 4.528∗∗∗ + 0.029∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.380 -2.0% 

Bioenergy 

power 

FIT ln 𝑈𝐶𝑡 = 3.398∗∗∗ + 0.090∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.626 -6.4% 

RPS ln 𝑈𝐶𝑡 = 3.916∗∗∗ + 0.073∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.510 -5.2% 

Small hydro 

power 

FIT ln 𝑈𝐶𝑡 = 3.668∗∗∗ + 0.069∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.607 -4.9% 

RPS ln 𝑈𝐶𝑡 = 3.053∗∗∗ + 0.126∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.576 -9.1% 

Fuel cell 

power 

FIT ln 𝑈𝐶𝑡 = 5.970∗∗∗ − 0.020∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.949 1.4% 

RPS ln 𝑈𝐶𝑡 = 6.365∗∗∗ − 0.051∗∗∗ ∙ ln 𝐶𝑈𝑀𝑡 0.924 3.5% 

Table 1 Estimated LRs (note: *** p value<0.01) 

However, fuel cell power has a comparatively greater adjusted R2 in the estimated 

regression equation, surpassing 0.9 for both the FIT and RPS scheme periods. Additionally, 

fuel cell power exhibits positive LRs under both the FIT and RPS schemes, with the LR 

under the RPS scheme (i.e., 3.5%) being greater than that under the FIT scheme (i.e., 1.4%), 

which implies that the transition to the RPS regime resulted in an improved learning effect.6  

To verify the robustness of the outcomes reported in Table 1, a 2FLC model was 

implemented. The learning-by-doing rates derived from the 2FLC model were similar to 

 

6 To determine whether there is a structural break in the learning curve between the FIT and RPS 

periods, a Chow test was conducted for the four RETs. The results of the Chow test indicated that 

there is a structural break between FIT and RPS periods for all the four RETs, with a confidence 

level of 1%.   
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those obtained from the above 1FLC model. 7 

Hong et al. [4] analysed the impact of transitioning from the FIT scheme to the RPS scheme 

on the learning curve of photovoltaics, as shown in Figure 8. According to Hong et al. [4], 

the FIT-to-RPS transition resulted in a significant change in the learning curve for 

photovoltaics, with the LR shifting from -0.28% to 18.44%. Comparing the analysis results 

of the four RETs analysed in this paper with the analysis conducted by Hong et al. [4] for 

photovoltaics, it is evident that among the four RETs, only the trend for fuel cell power is 

shown to be similar to that for photovoltaics. Hong et al. [4] argued that the RPS scheme 

effectively facilitated cost reductions through promoting competition among RETs via the 

REC market. They observed that this mechanism works well for photovoltaics. However, in 

the current study, this learning effect mechanism was effective only for fuel cell power 

among the four non-photovoltaic RETs. For the other three RETs, namely, onshore wind 

power, bioenergy power, and small hydropower, such mechanisms and cost reductions are 

not clearly observed. 

 

7 A detailed description and the results of the 2 FLC model are provided in Appendix A. 
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Figure 8 Learning curve of photovoltaics during the FIT and RPS scheme periods (Hong et al. [4]) 

When the RE support scheme transitioned from the FIT to the RPS, among the four RETs, 

fuel cell power demonstrated a more apparent learning effect. In contrast, for onshore 

wind power, bioenergy power, and small hydropower, the learning effect was not realized 

in both the FIT and RPS periods. In the case of small hydropower, the negative LR became 

worse in the RPS period than in the FIT period.  

This finding can be explained by the following two factors. 
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The first reason is related to site constraints and land availability restrictions in South Korea8. 

Initially, RE power plants were installed at sites with favourable wind conditions or ideal 

conditions for small hydropower and bioenergy power. Subsequently, as favourable sites 

were exhausted, RE power plants were installed at less favourable sites. Consequently, the 

increased cost incurred by installing on these unfavourable sites offset the cost reduction 

effect resulting from the increase in the amount of cumulative production. In contrast, 

photovoltaics and fuel cell power systems were relatively less affected by site limitations. 

Solar energy is evenly distributed in South Korea, and thus, the cost of photovoltaic 

generation is significantly influenced by improvements in photovoltaic performance. In 

South Korea, fuel cell power commonly utilizes processed natural gas as fuel, providing a 

stable supply without increasing fuel prices. Hence, the generation cost of fuel cell power 

is influenced mainly by the performance and efficiency of fuel cell devices. 

The previous explanation can be described through the concept of the levelized cost of 

electricity (LCOE). LCOE represents the average lifetime cost of generating electricity for a 

generator [51]. LCOE for RE generation largely depends on four factors: installed cost, 

 

8 South Korea is a relatively small country, covering an area of 100,413 km2, with 70% of its 

territory being mountainous. 
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capacity factors, operation and maintenance costs, and the weighted average cost of capital 

(WACC) [52]. Installed costs are determined by equipment costs, construction work, grid 

connections, planning and project costs, and land, i.e., site-specific characteristics. Capacity 

factors represent the percentage of time a power plant operates at maximum output over 

a 24-hour period. For example, the capacity factor for wind power generation is influenced 

by the nature and quality of wind resources and the technology applied such as the design 

and operational availability of wind turbines. LCOE will vary depending on the installed 

cost and the capacity factor for a particular installation and location [53]. As more wind 

power plants are installed, technological innovations and learning effects lead to increase 

turbine capacity, blade length, etc., which decrease installed costs and increase capacity 

factors. However, as suitable locations become scarce and developers are forced to use 

less optimal, more expensive sites, the installed costs rise and capacity factors diminish. If 

the detrimental effects of these less favourable locations outweigh the benefits of 

technological advancements, the LCOE will increase. 

This phenomenon also applies to small hydropower, for which increasingly challenging 

sites lead to higher development costs, more complex engineering conditions and lower 

capacity factors, thus increasing the LCOE. Similarly, the expansion of bioenergy power, 
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which involves fuel costs, can lead to competition for fuel for other uses such as agriculture, 

pushing up the LCOE as fuel becomes a scarce resource [52,53]. 

 

Figure 9 Impact of an increase of onshore wind farm sites on LCOE 

Figure 9 illustrates the corresponding results for onshore wind power. As the onshore wind 

farms expand from Q0 to Q1, installing wind farms at sites with higher installed costs and 

poorer wind quality causes the LCOE to increase by ①. In contrast, technological 

innovations such as increased turbine capacity and the effects of scale economy lead to a 

decrease in LCOE by ②, partially offsetting the increase represented by ①. If the magnitude 

of ① exceeds that of ②, the LCOE will ultimately increase from LCOE0 to LCOE1. If the issue 

of depleting favourable sites would not have occurred, the LCOE would have decreased 

from LCOE0 to LCOE2. 
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The second reason is related to the cost reimbursement structure of the FIT and RPS 

schemes. Under the FIT scheme, the government establishes standard prices for each RET 

and purchases RET-E at these standard prices for 15 years. Hence, RE power plant operators 

receive revenue equivalent to the standard price. These standard prices are periodically 

adjusted and announced by the government based on technological advancements or 

policy objectives. Lowering the standard price makes it much closer to the electricity market 

price, i.e., the system marginal price (SMP). The SMP fluctuates depending on the electricity 

market conditions. In situations where the SMP suddenly increases due to certain market 

circumstances, there are cases in which the standard price temporarily becomes lower than 

the SMP (Figure 2). 

In contrast, the RPS scheme enables RE power plant operators to earn revenue equal to 

“SMP + REC”. When generating RET-E, RE power plants sell electricity to the electricity 

market and earn revenue equivalent to the SMP, while the RECs9 obtained from RET-E 

generation are sold in the REC market to generate additional revenue (Figure 3). Therefore, 

 

9 REC issuance quantities are determined differently based on the type of RETs and even within 

the same RET category, which is referred to as a multiplier. For instance, for 1 megawatt-hour 

(MWh) of electricity generation, onshore wind power receives 1 REC, small hydropower receives 

1.5 RECs, and fuel cell power receives 2 RECs. 
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RE power plants always earn an income higher than the SMP by the price of RECs.  

Hence, although the RPS scheme may encourage cost reductions through competition, 

when the difference between the standard price for the RET and the SMP is not significant, 

the FIT scheme may lead to greater cost reductions than the RPS scheme. The standard 

prices of onshore wind power, bioenergy power, and small hydropower were not 

significantly higher than SMPs, as shown in Figure 2. 

 

7 Conclusions and policy implications 

In this study, the impact of transitioning South Korea's RE support system from a price-

based system (FIT) to a quantity-based system (RPS) on the cost reduction of non-

photovoltaic RETs, namely, onshore wind power, bioenergy power, small hydropower, and 

fuel cell power, is analysed using a learning curve model. In the case of fuel cell power, an 

increase in the LR has accelerated the decrease in generation costs.  

However, for onshore wind power, bioenergy power, and small hydropower, an evident 

improvement in the learning effect was not observed. The reasons for this are twofold. 

First, due to site constraints and limited land availability, as more RE power plants were 

installed, the availability of favourable sites decreased. This necessitated the installation of 
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RE power plants in areas that are less economically viable. Second, the RPS scheme, in 

which the generation cost is set as SMP + REC, possesses structural characteristics that 

make it challenging to decrease the cost to a level similar to SMP. 

From this analysis, the following two policy implications can be drawn. 

First, identifying and allocating competitive and attractive locations or lands for RE power 

generation is an important policy goal. For onshore wind power, bioenergy power, and 

small hydropower, policy measures aimed at improving irrational regulations and process 

burdens related to the installation of RE power plants, allowing for the installation of RE 

power plants under more favourable site conditions, may become very effective for 

reducing generation costs. One of the significant obstacles to the expansion of RE power 

plants lies in excessive and intricate regulations and procedures. Thus, strengthening policy 

efforts to simplify and eliminate such regulations and procedures is necessary to enable 

the installation of RE power plants at sites with good economic viability.  

McKinsey & Company [54] noted that the expansion of renewable energy is critical not 

only for addressing climate change but also because dependency on fossil fuels, as seen 

in the Russia-Ukraine war, greatly weakens energy security. It is argued that finding 

adequate lands or sites will be a very challenging issue for expanding RE deployment in 
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the future. Notably, the availability of land suitable for RE is constrained by technical, 

regulatory, and environmental limitations. For example, in the case of onshore wind power, 

excessive regulation is the most significant obstacle affecting land availability. Several 

alternatives are suggested to potentially increase land availability for RE, such as 

encouraging social acceptance, revisiting regulatory rules, fostering hybrid land use, and 

maximizing repowering. 

A study on the barriers to RE deployment in Korea [55] identified unnecessary and irrational 

regulations as the most significant obstacles to the expansion of RE deployment in Korea. 

For example, even within regions that are not significantly different, there are frequent 

instances in which the distance requirements between RE power plants vary greatly among 

basic local governments. Particularly in the case of wind farms, Yeongdong County and 

Okcheon County have set minimum separation distances ranging from 500 metre to 1000 

metre. Given the numerous existing legal restrictions on the location of RETs, the study 

highlights the need to remove unnecessary regulations, such as redundant rules, and to 

streamline related administrative procedures to promote efficient RE projects. Additionally, 

it is important to actively involve citizens in RE initiatives and provide related education to 

motivate them to support RE deployment. 
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The second implication is related to improving the RPS scheme, possibly by adopting a 

system similar to the hydrogen power auction market system (i.e., the Clean Hydrogen 

Portfolio Standard (CHPS)) established in 2023 in South Korea. The hydrogen power auction 

market system is a government-regulated system in which the government announces the 

annual hydrogen power purchase volume, opens an auction market for hydrogen power 

generation, and awards contracts for environmentally and economically viable hydrogen 

power generation to ensure long-term supply at a fixed generation price. This system 

involves a long-term fixed hydrogen power price that is not divided by the SMP or REC, 

making it advantageous for inducing cost reductions. 

Meanwhile, this study has the following limitations, so the research results need to be 

interpreted with caution. First, due to data collection constraints, unit price was used 

instead of unit cost and the more comprehensive 2FLC10 methodology was not employed 

in the learning curve model. Furthermore, due to the limitations of the 1FLC model, some 

important variables, such as raw material prices, which could be correlated with other 

 

10 In Appendix A, the results of the 2FLC analysis have been added to validate the robustness of 

the 1FLC model analysis. However, due to data collection constraints, only the knowledge stock 

from the government sector was included, whereas that of the private sector was not, which also 

represents a limitation 
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explanatory variables may have been omitted. These factors raise concerns about potential 

estimation bias in the analysis results. Second, this study pertains to South Korea, which 

has a small land area with mountains covering 70%, thus resulting in limitations in land 

availability. In countries with large land area where there are no land constraints related to 

the installation of RE power plants, the learning effect may become evident as RE power 

generation increases, leading to significant cost reductions. Therefore, it is problematic to 

generally apply these findings to countries with fewer land constraints. What this study 

implies is that in countries like South Korea, where the land area is small and land 

availability limitations are severe, cost reductions in RE generation may not be clearly 

realized even if RE generation accumulates. Therefore, policy efforts to improve land 

availability are necessary.  

Future research could involve quantitatively assessing the cost increases associated with 

land availability limitations in countries where these limitations are severe for various RE 

sources. This would be significant both politically and academically, aligning with the trend 

towards expanding the installation of RE power plants. 
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APPENDIX A. The results of two-factor learning curve (2FLC) analysis 

 

While the 1FLC model relies only on the effects of learning-by-doing, considering only 

installed capacity or production, the 2FLC model also accounts for the effects of learning-

by-researching, which originates from knowledge stock through the accumulation of R&D 

investment, in addition to learning-by-doing. 

Therefore, the 2FLC model is generally expressed as follows:  

 𝑈𝐶𝑡 = 𝐶0 ∙ (𝐶𝑈𝑀𝑡)𝑎 ∙ (𝐾𝑆𝑡)𝑏             (A-1) 

 𝐾𝑆𝑡 = (1 − 𝜌) ∙ 𝐾𝑆𝑡−1 + 𝑅𝐷𝑡−𝑅𝐷𝑙𝑎𝑔        (A-2) 

By taking the logarithmic form of equation (A-1), the following equation is obtained: 

 ln 𝑈𝐶𝑡 = ln 𝐶0 + 𝑎 ∙ ln 𝐶𝑈𝑀𝑡 + 𝑏 ∙ ln 𝐾𝑆𝑡 (A-3) 

In the above equations, 𝐾𝑆 represents the knowledge stock and is calculated as shown in 

equation (A-2). According to equation (A-2), the knowledge stock depreciates annually by 

𝜌, and R&D investment contributes to the knowledge stock after a time lag of 𝑅𝐷𝑙𝑎𝑔. In 

equation (A-1), 𝑎  represents the learning-by-doing index (LDI), and 𝑏  represents the 

learning-by-researching index (LRI), and the learning-by-doing rate (LDR) and the learning-

by-researching rate (LSR) are as follows: 
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 𝐿𝐷𝑅 = 1 −  2𝑎,  𝐿𝑆𝑅 = 1 −  2𝑏 

Figure A-1 shows the annual and cumulative government R&D investments for the four 

RETs from 2002 to 2020. 

  

  

Figure A-1 Annual and cumulative government R&D for RETs (source: IEA, Energy Technology RD&D 

Budgets) 

To calculate the quarterly government R&D budget, the annual government R&D 

investment was assumed to be allocated quarterly at 30%, 30%, 20%, and 20% 
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respectively.11 The GDP deflator (2015=100) was also used to compute the quarterly 

knowledge stock. 

In the 2FLC model, various time lags and depreciation factors can be applied. Referring to 

Hong et al. [35], who applied the 2FLC model to Korea's photovoltaics, 𝑅𝐷𝑙𝑎𝑔=3 and 𝜌=0.2 

are assumed in the current 2FLC model. The results of the 2FLC with quarterly knowledge 

stock are shown in Table A-1. 

RET Period 
CUM KS Adjusted  

R2 
DW VIF 

LDI LDR LRI LSR 

Onshore wind 

power 

FIT 0.130*** -9.4% -0.060*** 4.1% 0.948 0.20 8.31 

RPS 0.037*** -2.6% 0.055*** -3.9% 0.563 0.14 1.01 

Bioenergy 

power 

FIT 0.306*** -23.6% -0.362*** 22.2% 0.829 0.40 18.75 

RPS 0.019 -1.3% 0.340*** -26.6% 0.719 0.23 3.04 

Small hydro 

power 

FIT 0.206*** -15.3% -0.132*** 8.7% 0.861 0.47 5.53 

RPS 0.048*** -3.4% 0.088*** -6.3% 0.829 0.19 1.94 

Fuel cell 

power 

FIT -0.030*** 2.1% 0.079*** -5.6% 0.983 0.74 8.31 

RPS -0.057*** 3.9% -0.026 1.8% 0.927 0.15 24.78 

Table A-1 Results of the 2FLC model analysis 

As shown in Table A-1, similar to the results of the 1FLC model analysis, for onshore wind 

power, bioenergy power, and small hydropower, the LDRs are negative during both the FIT 

 

11 Because the Korean government encourages spending more than 60% of the annual budget in 

the first half of the year to stimulate the domestic economy, it is reasonable to allocate such 

proportions on a quarterly basis [35]. 
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and RPS periods. This indicates that despite the accumulation of production, a positive 

learning-by-doing effect is observed for neither the FIT nor the RPS schemes. On the other 

hand, fuel cell power displays a positive learning-by-doing effect during the FIT period, 

and this effect increased during the RPS period. 

The learning-by-researching effect for onshore wind power, bioenergy power, and small 

hydropower is positive during the FIT period and negative during the RPS period. In 

contrast, the learning-by-researching effect for fuel cell power is negative during the FIT 

period and positive during the RPS period. However, interpreting the analysis results of the 

learning-by-researching effect requires great caution. To accurately calculate the knowledge 

stock, it is necessary to consider both government and private sector R&D investments to 

reflect the total national R&D investment in the model. Nonetheless, in this analysis, due 

to the practical difficulty of obtaining data for private sector R&D investments, only the 

government’s R&D investment was included. Because the private sector is growing larger 

than the public sector in the Korean economy, the omission of private sector R&D 

investment may be a significant limitation of this 2 FLC model. This limitation may have 

distorted not only the analysis results of learning-by-researching but also those of learning-

by-doing. In conclusion, the analysis results of the 2FLC model reveal that effects of 
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learning-by-doing during the FIT and RPS periods are similar to those in the 1FLC analysis. 

However, it is important to exercise caution when interpreting the results of the 2FLC model 

analysis. 

 

 

APPENDIX B Amount of RET generation during the FIT and RPS scheme periods 

 

Figure B-1 displays the quarterly and cumulative amounts of RET-E generated under the 

FIT and RPS schemes from 2002 to 2020. Figure B-1 (a) shows the quarterly generation 

from installed RE power plants under the FIT scheme through 2011. Since 2012, indicated 

by the red vertical line, the RPS scheme has been implemented, and subsequent RE power 

plants have been installed under the RPS regime. Additionally, under the RPS scheme, RET-

E generation continues at RE power plants that were initially installed under the FIT scheme. 

Therefore, the quarterly generation since 2012 comprises the amount generated from 

operational RE power plants installed under the FIT scheme before 2012 and that of newly 

installed RE power plants operating under the RPS regime. These quarterly data shown in 

Figure B-1 (a) are combined to establish the cumulative plot in Figure B-1 (b). Figure B-1 
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(a) shows that under the FIT regime, the amount of quarterly generation of the four RETs 

did not significantly increase. However, since the implementation of the RPS scheme in 

2012, substantial increases have been observed in the amounts of bioenergy power 

generation, fuel cell power generation, and onshore wind power generation. This trend is 

also reflected in the cumulative generation data shown in Figure 6 (b), which suggests that 

the RPS scheme made a greater contribution to the increase in the three types of RET-E 

generation than did the FIT regime. 
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(a) Quarterly power generation under the FIT and RPS schemes (source: KNREC, KPX) 

 

(b) Cumulative power generation under the FIT and RPS schemes (source: KNREC, KPX) 

Figure B-1 Quarterly and cumulative power generation from RETs 



42 

 

APPENDIX C Quarterly and cumulative transaction costs of RETs 

Figure C-1 Quarterly and cumulative transaction costs of RETs 

* Under the RPS scheme, accurately calculating transaction costs requires knowledge of real-time 

REC prices and which RECs were used for settlement. However, since this is not feasible, monthly 

average prices were calculated and applied instead.  

 
(a) Quarterly transaction cost of RETs 

 
(b) Cumulative transaction cost of RETs 
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1 Introduction 

 

Environmental issues, including CO2 emissions, and economic growth are critical policy 

targets for all countries. Energy significantly impacts both economic growth and 

environmental concerns. These three factors influence each other, making their analysis a 

major focus for researchers. Numerous studies have examined these relationships using 

time series analyses across different countries. For instance, the relationship between 

economic growth and environmental issues has frequently been explored through the 

environmental Kuznets curve hypothesis (Luzzati and Orsini, 2009; Shahbaz et al., 2013; 

Özokcu and Özdemir, 2017; Awaworyi Churchill et al., 2018). Similarly, the relationship 

between energy use and environmental issues has been widely studied, focusing on how 

renewable, nuclear, and fossil fuel energy sources impact CO2 emissions (Belaïd and Zrelli, 

2019; Begum et al., 2015; Saidi and Omri, 2020; Sadorsky, 2009; Dogan and Seker, 2016; 

Balsalobre-Lorente et al., 2018). 

Dynamic models, such as the Vector Autoregressive (VAR) model, have been extensively 

used to analyze these relationships. The traditional and standard VAR model, also known 

as the reduced form VAR model is widely used in empirical research due to its simplicity, 

flexibility, and ease of implementation. It does not require theoretical restrictions, making 
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it accessible for exploring dynamic interactions based purely on observed data. It is valued 

for its data-driven approach and ability to provide insights through tools like impulse 

response functions and Granger causality test result. These features make it an ideal 

preliminary tool for examining relationships, establishing robustness, and serving as a 

foundation before applying more complex models like structural VAR. However, it does not 

account for immediate effects between variables, which are particularly relevant in the 

energy and environmental sectors where changes often occur contemporaneously. For 

example, an increase in fossil fuel usage leads to an immediate rise in CO2 emissions. As 

a result, relying solely on the reduced-form VAR model can lead to significant limitations 

in analyzing energy policy impacts, potentially misrepresenting causal relationships. 

In contrast, the Structural VAR (SVAR) model, introduced by Sims (1980), incorporates 

contemporaneous effects 12  by imposing theoretical restrictions, enabling causal 

interpretation of shocks. These features make SVAR a more robust tool for evaluating 

 

12 In the context of the SVAR model, contemporaneous effects refer to the immediate interactions 

between variables within the same time period. This concept highlights the SVAR model’s ability to 

capture direct causal relationships, providing a key advantage over traditional VAR models. The time 

unit is crucial when considering lagged effects. If the time unit is a day or a month, the energy mix 

may be assumed to have only a lagged effect on CO2 emissions. However, when the time unit is a 

year, what appears as a lagged effect in shorter time units becomes a contemporaneous effect. 

Therefore, the choice of time unit can make the effect seem either lagged or contemporaneous. 
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complex relationships, such as those in energy and environmental systems. Additionally, 

by addressing immediate interactions among variables, SVAR allows for a more nuanced 

and realistic evaluation of policy impacts, particularly in sectors where contemporaneous 

effects are critical. 

Despite its advantages, there is limited empirical research comparing the results of 

reduced-form VAR with those of SVAR, particularly regarding their implications for energy 

policy. This study bridges this gap by comparing these models to better understand how 

assumptions within each influence findings. While reduced-form VAR offers flexibility and 

simplicity, SVAR provides deeper insights by addressing the dynamic and immediate 

interactions that shape energy policy outcomes. 

This study analyzes empirical data from South Korea and Japan, focusing on the causal 

relationships between the energy mix, economic growth, and CO2 emissions. South Korea 

and Japan are highly relevant case studies for this research due to their shared challenges 

and distinct approaches to energy policy and structure. As resource-poor nations heavily 

dependent on energy imports, both face significant energy security concerns but have 

developed unique strategies to address these issues. South Korea has made substantial 

strides in integrating nuclear power to reduce reliance on fossil fuel imports and enhance 
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energy self-sufficiency. Its long-standing reliance on nuclear energy, combined with recent 

shifts toward renewables under the Green New Deal, illustrates a dual commitment to 

energy security and sustainability. In contrast, Japan’s energy policy experienced a dramatic 

shift after the 2011 Fukushima disaster, moving away from nuclear power toward renewable 

energy and efficiency. This comparative analysis of South Korea and Japan provides valuable 

insights into energy policy, and energy structure in resource-constrained, advanced 

economies in terms of CO2 emissions reduction. 

Furthermore, this study highlights how SVAR provides a more accurate framework for 

understanding energy policies' impacts, demonstrating the importance of accounting for 

contemporaneous effects between variables. By comparing reduced form VAR with SVAR, 

the findings emphasize that SVAR enables more realistic evaluations of energy policy 

impacts, offering policymakers valuable insights into the differential effects of renewables 

and fossil fuels on emissions. The results offer valuable insights for policymakers, showing 

how different energy sources like renewables and fossil fuels affect emissions in South 

Korea and Japan, helping to design more effective and sustainable energy policies. 

 

2 Literature review 
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Many studies have analysed the causal relationships between various factors, including 

energy mix, CO2 emissions, and economic growth, using various dynamic time series 

methodologies. The reduced form VAR and Granger causality test have been widely used 

in research. Some findings from these studies show results that differ from generally 

accepted energy policy effects. 

Belaïd and Zrelli (2019)’s empirical study in Mediterranean countries indicates that in short-

term the results of reduced for VAR show that renewable energy consumption significantly 

positively Granger causes CO2 emissions and on the other hand, non-renewable energy 

consumption significantly negatively Granger causes CO2 emissions. Aslan et al. (2022)’s 

panel VAR approach result shows that neither renewable energy consumption nor fossil 

fuel energy consumption has a significant causal impact on CO2 emissions. Moreover, it 

was found that, although not statistically significant, renewable energy consumption has a 

positive causal impact on CO2 emissions, while fossil fuel energy consumption has a 

negative causal impact on CO2 emissions. The research results of Dogan and Seker (2016) 

in the EU indicate that, according to the results of the Granger causality test based on 

reduced form VAR, non-renewable energy does not have a causal impact on CO2 emissions. 

Instead, CO2 emissions have a unidirectional causal impact on non-renewable energy. Dong 
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et al. (2018) indicates that Granger causality test based on reduced form VAR shows that 

in the short-run fossil fuel electricity, nuclear electricity, and renewable electricity all 

Granger cause positively and statistically significantly CO2 emissions.  

Meanwhile, some recent studies have used SVAR models to empirically analyse the 

causality between the energy sector and other factors. Narayan et al. (2008) applied a SVAR 

model with zero short-run restrictions to examine the relationship between electricity 

consumption and GDP in G7 countries. They concluded that, except for the United States, 

electricity consumption has a positive causation effect on GDP, and except for Italy, GDP 

has a positive causation effect on electricity consumption. Tiwari (2011) researched the 

causal relationship between renewable energy, GDP, and CO2 emissions using the SVAR 

model in India and concluded that renewable energy positively causes GDP and negatively 

causes CO2 emissions, while GDP positively causes CO2 emissions. Pan et al. (2019) applied 

a SVAR model using Directed Acyclic Graphs (DAG) in Bangladesh to analyse forecast error 

variance decomposition (FEVD) and found that financial development and trade openness 

have a greater impact on technical innovation, and that financial development, trade 

openness, and technical innovation significantly affect energy intensity. Bruns et al. (2021) 

applied a SVAR model to the United States and found that energy efficiency has a negative 
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causal relationship with energy consumption in the short term, but it does not have a 

causality impact in the long term. Calcagnini et al. (2016) applied a SVAR model with long-

run restrictions in Italy and concluded that supply shocks have a permanent effect on 

energy intensity and pollution, whereas demand shocks have a transitory effect on energy 

intensity and pollution. Işık et al. (2024)  analysed the causal relationships between the 

Domestic-Export/Re-Export ratio, Climate Policy Uncertainty, CO2 emissions, and the 

Industrial Production Index in the United States using the SVAR model. They concluded 

that an increase in the Domestic-Export/Re-Export ratio increases CO2 emissions, but an 

increase in Climate Policy Uncertainty does not affect CO2 emissions. Oryani et al. (2020) 

applied a SVAR model with long-run restrictions in Iran to examine the causal relationship 

between GDP, renewable energy, and CO2 emissions. They found that an increase in 

renewable energy does not reduce CO2 emissions but does increase GDP, while an increase 

in GDP leads to an increase in CO2 emissions. 
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Author(s) Period 
Country 

/region 
variables Restrictions method results 

Narayan et al. 

(2008) 

(USA) 1970-2002 

(others) 1960-2002 
G7 countries Electricity Consumption, GDP Zero short-run restrictions 

EC↑→ GDP↑ (except for the USA) 

GDP↑ → EC↑ (except for Italy) 

Tiwari (2011) 1965-2009 India 
RE, GDP, CO2 

*ordering: RE→ GDP→CO2 
Long-run restrictions 

RE↑→ GDP↑, CO2↓,  

GDP↑→ CO2↑ 

Pan et al. (2019) 1976-2014 Bangladesh 

GDP, Financial Development,  

Trade Openness, Technical Innovation,  

Energy Intensity 

Directed acyclic graphs 

(DAG) 

Variance Decomposition: 

FD, TO → TI,  

FD, TO, TI → EI, 

Bruns et al. (2021) 
Jan.1992-Oct.2016 

1st 1973-3rd 2016 
USA 

GDP, Electricity Consumption, Energy 

Price, Energy Efficiency 

Independent Component 

Analysis 

EE↑→(Short-Run) EC↓,  

        (Long-Run) 𝐸𝐶̅̅ ̅̅  

Calcagnini et al. 

(2016)  

1961–2010 (quarterly 

data) 
Italy 

Supply∙Demand shocks, Energy 

Intensity, Pollution 
Long-run restrictions 

Supply-shocks → (permanent) EI, Pol  

Demand-shocks → (transitory) EI, Pol  

Isık et al. (2024) 

Gondwana Research 
Feb.2002-Nov.2021 USA 

Domestic-Export/Re-Export ratio, 

Climate Policy Uncertainty, CO2, 

Industrial Production Index 

Long-run restrictions 
DE/RE↑→ CO2↑, 

CPU↑→ CO2↑(x) 

Oryani et al. (2020) 

energies 
1980-2016 Iran GDP, RE, CO2 Long-run restrictions 

RE↑→ CO2↓(x), GDP↑ 

GDP↑→ CO2↑ 

* EC (electricity consumption), FD (financial development), TO (trade openness), TI (technical innovation), EI (energy intensity), Pe (energy price), EE (energy 

efficiency), Pol (pollution) 

Table  2 Research on the energy sector using SVAR 
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3 Methodology 

 

In this research there are five variables; 𝐶𝑂2, 𝐺𝐷𝑃, 𝑅𝐸, 𝑁𝐸 and 𝐹𝐸, where 𝐶𝑂2 represents CO2 

emissions per capita, 𝐺𝐷𝑃 is real GDP per capita, 𝑅𝐸 is renewable electricity per capita, 𝑁𝐸 

is nuclear electricity per capita, and 𝐹𝐸 is fossil fuel electricity per capita. The reduced form 

VAR model considers that all variables are endogenous and a current variable is determined 

by the lagged all variables.  

Assuming the lag is one, the reduced form VAR model is shown as follows: 

 𝐶𝑂2 𝑡 =  𝛼10 + 𝛼11𝐶𝑂2 𝑡−1 + 𝛼12𝐺𝐷𝑃𝑡−1 + 𝛼13 𝑅𝐸𝑡−1 + 𝛼14 𝑁𝐸𝑡−1 + 𝛼15 𝐹𝐸𝑡−1 + 𝑒1𝑡     (1) 

𝐺𝐷𝑃𝑡 =  𝛼20 + 𝛼21𝐶𝑂2 𝑡−1 + 𝛼22𝐺𝐷𝑃𝑡−1 + 𝛼23𝑅𝐸𝑡−1 + 𝛼24 𝑁𝐸𝑡−1 + 𝛼25 𝐹𝐸𝑡−1 + 𝑒2𝑡       (2) 

𝑅𝐸𝑡   =  𝛼30 + 𝛼31𝐶𝑂2 𝑡−1 + 𝛼32𝐺𝐷𝑃𝑡−1 + 𝛼33𝑅𝐸𝑡−1 + 𝛼34𝑁𝐸𝑡−1 + 𝛼35 𝐹𝐸𝑡−1 + 𝑒3𝑡       (3) 

𝑁𝐸𝑡  =  𝛼40 + 𝛼41𝐶𝑂2 𝑡−1 + 𝛼42𝐺𝐷𝑃𝑡−1 + 𝛼43𝑅𝐸𝑡−1 + 𝛼44𝑁𝐸𝑡−1 + 𝛼45𝐹𝐸𝑡−1 + 𝑒4𝑡        (4) 

𝐹𝐸𝑡  =  𝛼50 + 𝛼51𝐶𝑂2 𝑡−1 + 𝛼52𝐺𝐷𝑃𝑡−1 + 𝛼53𝑅𝐸𝑡−1 + 𝛼54𝑁𝐸𝑡−1 + 𝛼55𝐹𝐸𝑡−1 + 𝑒5𝑡        (5) 

 * 𝐸(𝑒𝑖𝑡) = 0, 𝑐𝑜𝑣 (𝑒𝑖𝑡 , 𝑒𝑖(𝑡+𝑠)) = 0, 𝑐𝑜𝑣 (𝑒𝑖𝑡 , 𝑒𝑗𝑡)  ≠ 0  

Reduced form VAR model does not include current variables in explanatory variables, 

allowing for the application of OLS to estimate the coefficients. The error terms (𝑒𝑖𝑡) are 

not correlated with their own past values, but the error terms in different equations have 
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non-zero covariance with each other, implying that the error terms may include 

contemporaneous effects of the explanatory variables. From the results of reduced form 

VAR model, Granger causality test can be easily conducted: If the estimated coefficient of 

lagged explanatory variable is statistically significant, the explanatory variable Granger 

causes the dependent variable. 

In contrast, the SVAR model incorporates contemporaneous relations into the equations. 

Therefore, OLS cannot be applied to it due to the problem of endogeneity. 

Assuming that the lag is one, the SVAR model is expressed as follows. 

𝐶𝑂2 𝑡 = 𝛼10 + 𝛼11𝐶𝑂2 𝑡−1 + 𝛼12𝐺𝐷𝑃𝑡−1 + 𝛼13 𝑅𝐸𝑡−1 + 𝛼14 𝑁𝐸𝑡−1 + 𝛼15 𝐹𝐸𝑡−1 + 𝛼16𝐺𝐷𝑃𝑡 + 𝛼17 𝑅𝐸𝑡 + 𝛼18 𝑁𝐸𝑡 + 𝛼19 𝐹𝐸𝑡 + 𝜖1𝑡 (6) 

𝐺𝐷𝑃𝑡 = 𝛼20 + 𝛼21𝐶𝑂2 𝑡−1 + 𝛼22𝐺𝐷𝑃𝑡−1 + 𝛼23𝑅𝐸𝑡−1 + 𝛼24 𝑁𝐸𝑡−1 + 𝛼25 𝐹𝐸𝑡−1 + 𝛼26𝐶𝑂2 𝑡 + 𝛼27𝑅𝐸𝑡 + 𝛼28 𝑁𝐸𝑡 + 𝛼29 𝐹𝐸𝑡 + 𝜖2𝑡 (7) 

𝑅𝐸𝑡   = 𝛼30 + 𝛼31𝐶𝑂2 𝑡−1 + 𝛼32𝐺𝐷𝑃𝑡−1 + 𝛼33𝑅𝐸𝑡−1 + 𝛼34𝑁𝐸𝑡−1 + 𝛼35𝐹𝐸𝑡−1 + 𝛼36𝐶𝑂2 𝑡 + 𝛼37𝐺𝐷𝑃𝑡 + 𝛼38𝑁𝐸𝑡 + 𝛼39𝐹𝐸𝑡 + 𝜖3𝑡 (8) 

𝑁𝐸𝑡  = 𝛼40 + 𝛼45𝐶𝑂2 𝑡−1 + 𝛼42𝐺𝐷𝑃𝑡−1 + 𝛼43𝑅𝐸𝑡−1 + 𝛼44𝑁𝐸𝑡−1 + 𝛼45𝐹𝐸𝑡−1 + 𝛼46𝐶𝑂2 𝑡 + 𝛼47𝐺𝐷𝑃𝑡 + 𝛼48𝑅𝐸𝑡 + 𝛼49𝐹𝐸𝑡 + 𝜖4𝑡 (9) 

𝐹𝐸𝑡 = 𝛼50 + 𝛼51𝐶𝑂2 𝑡−1 + 𝛼52𝐺𝐷𝑃𝑡−1 + 𝛼53𝑅𝐸𝑡−1 + 𝛼54𝑁𝐸𝑡−1 + 𝛼55𝐹𝐸𝑡−1 + 𝛼56𝐶𝑂2 𝑡 + 𝛼57𝐺𝐷𝑃𝑡 + 𝛼58𝑅𝐸𝑡 + 𝛼59𝑁𝐸𝑡 + 𝜖5𝑡      (10) 

* 𝐸(𝜖𝑖𝑡) = 0, 𝑐𝑜𝑣 (𝜖𝑖𝑡, 𝜖𝑖(𝑡+𝑠)) = 0, 𝑐𝑜𝑣 (𝜖𝑖𝑡, 𝜖𝑗𝑡)  = 0 

What we can estimate from the empirical data are the reduced form VAR equations so we 

need to identify more than the observed results to estimate SVAR equations. Therefore, in 

SVAR, identifying restrictions are necessary and a critical issue. To identify a SVAR with five 

variables, we need a total of 55 identifications: 50 (=10*5) coefficients of the variables in 
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the equations (6)-(10) and 5 variances of error terms (𝜖𝑖). However, only 45 identifications 

are possible from empirical data through the reduced form VAR: 30(=6*5) coefficients of 

variables in the equations (1)-(5), and 5 variances and 10 covariances13 of the error terms 

(𝑒𝑡). Therefore, we must impose 10 restrictions on identifying to estimate the SVAR model. 

The identifying restriction cannot be resolved from empirical data but must be based on 

theory or empirical consideration (Levendis, 2018). 

There are mainly three identifying restriction methods in the SVAR model: zero restrictions, 

such as Cholesky decomposition; long-run restrictions, introduced by Blanchard and Quah 

in 1988; and sign restrictions. Among the five variables, there are recursive orders, where 

one variable is affected by other contemporaneous variables and a causal order exists in 

which some variables respond with lags to shocks in other variables. Therefore, this research 

employs the zero restrictions method, specially Cholesky decomposition, for identifying 

restrictions in the model. With five endogenous variables in the model, we establish an 

order based on which variable affects the others first, i.e., more exogenous variables are 

listed first in the order than more endogenous variables. If there are five variables, there 

are 5!, i.e., 5*4*3*2*1=120 ordering cases. Determining the ordering of these five variables 

 

13 There are 5 error terms; therefore, there are 10 (=5C2) covariances among them. 
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should be theory-based, as the data alone cannot determine this ordering. 

Among the five variables, RE, NE and FE should be placed first, followed by GDP and CO2 

emissions last. Energy use is the main cause of GDP and CO2 emissions. And CO2 emissions 

per capita is a by-product of aggregate output, therefore, GDP is placed before CO2 

emissions (Calcagnini et al., 2016). Among RE, NE and FE, RE usually has priority over NE 

and FE in entering electricity market, and FE normally supplements the gap between total 

electricity demand and electricity supply from RE and NE. Therefore, among electricity mix, 

RE is placed fist and then NE, and FE is the last (Charfeddine and Kahia, 2019).  

Conclusively, the order is arranged as follows. 

Order of variables: RE → NE → FE → GDP → CO2 emissions  

Based on the estimation of SVAR model, orthogonal impulse response functions (IRF) and 

Forecast Error Variance Decomposition (FEVD) can be estimated. The IRF represents the 

partial change in a variable at time 𝑡 + 𝑠 with respect to a shock (error term) at time 𝑡, 

assuming the error terms at times 𝑡 + 𝑠 + 1  and beyond are zero. The IRF not only 

demonstrates the direct and contemporaneous impact between variables but also the 

indirect impact that pass through two or more variables. This makes the IRF more accurate 

and effective in analysing causal relationships between factors compared to the Granger  
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 causality test (Levendis (2018). IRF can be estimated from reduced form VAR, though it is 

not orthogonal. FEVD illustrates how much of the forecast error variance of a variable can 

be attributed to its own shocks and to the shocks in other variables within the model over 

time. 

 

4 Data and results 

 

The data used in this research are summarized in Table 2.   

To achieve a normal distribution, the variable values are converted to logarithmic form. 

The analysis focuses on South Korea and Japan, with the analysis period spanning from 

1971 to 2021 (51 years).  

Variable Abbreviation Unit Period Source 

CO2 emission per 

capita 
CO2  Ton per capita 1971-2021 OECD 

Real GDP per capita GDP 
US dollar (2015 

constant) 
1971-2021 OECD 

Renewable Energy 

generation per capita 
RE kWh per capita 1971-2021 OECD 

Nuclear energy 

generation per capita 
NE kWh per capita 1971-2021 OECD 

Fossil fuel energy 

generation per capita 
FE kWh per capita 1971-2021 OECD 

Table  3 description and source of data 
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In the following, we examine reduced form VAR and SVAR and calculate the IRF and FEVD 

from the reduced form VAR and SVAR, following the processes outlined in Figure 1, using 

the data. (Levendis, 2018).  

First, to avoid the problem of spurious regression, augmented Dickey–Fuller test for unit 

root is conducted. The results show that in both Korea and Japan, all variables are non-

stationary at the level, but become statistically significantly stationary in the first difference 

for both trend and no-trend cases.14 Therefore, we conduct the analysis using the first-

difference values of the variables. 

Second, to determine the optimal lag in the VAR model, we calculate the values of AIC, 

 

14 The detailed test results are in Appendix.  

1. make sure that the data are stationary 

 

2. determine the number of lags 

 

3. Estimate the VAR 

 

4. Verify that the estimated VAR model is stable 

 

5. Calculate the IRFs from reduced form VAR and  

OIRFs and FEVDs from SVAR. 

Figure 10 Flow of analysis 
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HQIC, SBIC, and FPE, which are the criteria in selecting the optimal lag length for the VAR 

model by balancing the trade-off between the model's fit to the data and its complexity. 

HQIC and SBIC identified lag 0, while AIC and FPE identified lag 1 as the optimal lag15. 

Since AIC and FPE suggest lag 1 and generally these criteria are more focused on capturing 

dynamics in the data, we adopt lag 1 as the optimal lag. 

Next, the results of estimating the reduced form VAR and SVAR are as follows. 

The estimated results of reduced form VAR for South Korea are in Table 3. According to 

Table 3, the only lagged variable that significantly affects GDP is GDP itself, and no lagged 

variables significantly affect CO2 emissions. This result is consistent with the Granger 

Causality test result. 

 

15 The detailed test results are in Appendix. 

Dependent 

variable 

Lagged explanatory variable 

dln REt-1 dln NEt-1 dln FEt-1 dln GDPt-1 dln CO2 t-1 

dln REt 
-0.624*** 

(0.000) 

0.104** 

(0.044) 

-0.649* 

(0.084) 

-2.542** 

(0.014) 

1.580* 

(0.071) 

dln NEt 
-0.736** 

(0.037) 

0.288** 

(0.031) 

-0.622 

(0.524) 

3.413 

(0.204) 

-0.079 

(0.972) 

dln FEt 
0.091 

(0.283) 

-0.016 

(0.611) 

0.209 

(0.371) 

0.467 

(0.468) 

0.039 

(0.943) 

dln GDPt 
-0.021 

(0.461) 

0.005 

(0.626) 

-0.029 

(0.716) 

0.600*** 

(0.006) 

-0.231 

(0.212) 

dln CO2 t 
0.014 

(0.745) 

0.020 

(0.239) 

0.026 

(0.837) 

0.420 

(0.227) 

-0.100 

(0.733) 

Table  4 Results of reduced form VAR for South Korea  
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Regarding the estimation of the SVAR, after running STATA statistics package with the 

variable order of ‘RE → NE → FE → GDP → CO2 emissions’, we obtain the estimation of 

the contemporaneous effects of the explanatory variables on the dependent variables as 

Table 4. Since the variable ordering is set as ‘RE → NE → FE → GDP → CO2 emissions’ in 

Table 4, the coefficients of all contemporaneous explanatory variables for the dependent 

variable RE are constrained to 0. Among the contemporaneous explanatory variables for 

NE, the coefficients of FE, GDP, and CO2 are constrained to 0. For FE, the coefficients of 

GDP and CO2 among the contemporaneous explanatory variables are constrained to 0, 

and for GDP, the coefficient of CO2 is constrained to 0. In Table 4, FE shows a significantly 

positive causal effect on CO2 emissions, which is consistent with the theory of energy policy 

effects that fossil fuel generation is the main cause of CO2 emissions in the energy sector. 

Additionally, FE exhibits a significantly positive causal effect on GDP. On the other hand, 

looking at the causal effect of RE on CO2 emissions, an increase in RE significantly increases 

CO2 emissions contemporaneously. However, an increase in RE contemporaneously 

decreases FE significantly, and the decrease in FE reduces CO2 emissions. Therefore, to 

understand the net effect of RE on CO2 emissions, we must consider not only the direct 

effect but also the indirect effect through the reduction in FE. Conclusively, an increase in 
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RE reduces CO2 emissions, although it is not statistically significant, as demonstrated 

through the OIRF explained later. It shows that the reduced form VAR cannot detect indirect 

causality, whereas the OIRFs derived from the SVAR include all indirect effects. This makes 

the OIRFs more advantageous than the Granger Causality test in detecting causality 

(Levendis, 2018).  

Next are the results of the reduced form VAR analysis and the SVAR analysis for Japan. The 

results of the reduced form VAR for Japan are shown in Table 5. Lagged FE has a 

significantly positive effect on CO2 emissions. Lagged RE also shows a significantly positive 

effect on CO2 emissions at the 10% level, suggesting that an increase in lagged RE leads 

to an increase in CO2 emissions under 10% significance level, which is contrary to the 

expected effect of energy policies. There are no lagged factors found to have an effect on 

Dependent 

variable 

Contemporaneous explanatory variable 

dln REt dln NEt dln FEt dln GDPt dln CO2 t 

dln REt - 
0 

(constrained) 

0 

(constrained) 

0 

(constrained) 

0 

(constrained) 

dln NEt 
-0.143 

(0.700) 
- 

0 

(constrained) 

0 

(constrained) 

0 

(constrained) 

dln FEt 
-0.328*** 

(0.000) 

-0.042 

(0.146) 
- 

0 

(constrained) 

0 

(constrained) 

dln GDPt 
0.029 

(0.352) 

0.019* 

(0.063) 

0.185*** 

(0.000) 
- 

0 

(constrained) 

dln CO2 t 
0.051** 

(0.047) 

0.002 

(0.846) 

0.308*** 

(0.000) 

0.862*** 

(0.000) 
- 

Table  5 The contemporaneous effect of explanatory variables on dependent variable derived 

from SVAR in South Korea      * p-value in parenthesis (*** p<0.01, ** p<0.05, * p<0.1) 
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GDP.   

After running STATA with the variable order of 'RE → NE → FE → GDP → CO2 emissions', 

the estimation of the contemporaneous effects of explanatory variables on the dependent 

variable is obtained, as shown in Table 6. Not only FE and but also NE have significantly 

positive contemporaneous causal effects on CO2 emissions. However, both NE and RE 

exhibit a significantly negative contemporaneous causal effect on FE, resulting in a net 

negative impact on CO2 emissions by reducing FE.  

Fourthly, a test is conducted to determine whether the estimated VAR model is stable. If 

the VAR model is unstable, the forecast is unreliable and the relationships between 

variables may have changed over time (Levendis, 2018). As seen in Figure 2, in both South 

Korea and Japan, all the eigenvalues lie inside the unit circle. This indicates that the VAR 

Dependent 

variable 

Lagged explanatory variable 

dln REt-1 dln NEt-1 dln FEt-1 dln GDPt-1 dln CO2 t-1 

dln REt -0.535*** 

(0.001) 

-0.005 

(0.910) 

-0.509 

(0.299) 

-0.465 

(0.517) 

0.620 

(0.353) 

dln NEt -1.298** 

(0.023) 

0.383** 

(0.013) 

-2.047 

(0.232) 

2.241 

(0.372) 

-0.791 

(0.735) 

dln FEt 0.269*** 

(0.005) 

0.009 

(0.718) 

0.471 

(0.103) 

-0.153 

(0.718) 

-0.124 

(0.754) 

dln GDPt 0.0292 

(0.451) 

0.00543 

(0.601) 

0.111 

(0.338) 

0.304* 

(0.073) 

-0.117 

(0.459) 

dln CO2 t 0.105* 

(0.077) 

0.006 

(0.710) 

0.463*** 

(0.009) 

-0.011 

(0.966) 

-0.305 

(0.206) 

Table  6 the result of reduced form VAR for Japan    

    *p-value in parenthesis (*** p<0.01, ** p<0.05, * p<0.1)) 
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models meet the stability condition and are correctly specified. 

Lastly, IRFs from the reduced-form VAR, along with OIRFs and FEVDs from the SVAR, are 

calculated for South Korea and Japan. The results for South Korea are shown in Figures 3 

and 4, while those for Japan are presented in Figures 5 and 6. 

In South Korea, IRFs from the reduced-form VAR indicate that the energy mix does not 

significantly affect CO2 emissions over time. However, OIRFs from the SVAR reveal that 

Dependent 

variable 

Contemporaneous explanatory variable 

dln REt dln NEt dln FEt dln GDPt dln CO2 t 

dln REt - 
0 

(constrained) 

0 

(constrained) 

0 

(constrained) 

0 

(constrained) 

dln NEt 
0.134 

(0.795) 
- 

0 

(constrained) 

0 

(constrained) 

0 

(constrained) 

dln FEt 
-0.300*** 

(0.000) 

-0.073*** 

(0.000) 
- 

0 

(constrained) 

0 

(constrained) 

dln GDPt 
0.058 

(0.101) 

0.031*** 

(0.001) 

0.291*** 

(0.000) 
- 

0 

(constrained) 

dln CO2 t 
-0.002 

(0.952) 

0.024** 

(0.026) 

0.493*** 

(0.000) 

0.059* 

(0.000) 
- 

Table  7 The contemporaneous effect of explanatory variables on dependent variable 

derived from SVAR in Japan   * p-value in parenthesis (*** p<0.01, ** p<0.05, * p<0.1)) 

  

Figure 11 stability test of the VAR models 
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fossil fuel electricity (FE) significantly increases CO2 emissions contemporaneously, and 

renewable electricity (RE) significantly decreases CO2 emissions contemporaneously at the 

10% confidence level. For Japan, IRFs from the reduced-form VAR show that FE significantly 

increases CO2 emissions at time 1, while RE increases CO2 emissions over time, though 

this effect is not statistically significant. In contrast, OIRFs from the SVAR indicate that FE 

significantly increases CO2 emissions contemporaneously, whereas RE significantly 

decreases CO2 emissions contemporaneously at the 10% confidence level. 

Figure 7 shows the FEVDs derived from South Korea's SVAR model. As expected, the 

variation of CO2 emissions is primarily due to the shocks in FE, with approximately 50% of 

CO2 emissions variation attributed to shocks in FE after 1 year continuously. The shock of 

GDP contributes to the variation of CO2 emissions by around 20%, while those of RE and 

NE each contribute less than 5%. In Figure 8, FEVDs from SVAR in Japan show that the 

variation in CO2 emissions is due to shocks in FE by around 50%, then due to its own 

shocks by around 30%, and next to shocks in RE by around 20%. 
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Figure 12 irf from var (South Korea) (Gray area: 95% confidence interval)  * C.I is calculated from bootstraping method. 
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Figure 13 oirf from svar (South Korea) (Gray area: 95% confidence interval   * C.I is calculated from bootstrapping method 
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Figure 14 irf from var (Japan) (Gray area: 95% confidence interval)    * C.I is calculated from bootstrapping method 
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Figure 15 oirf from svar (Japan)  (Gray area: 95% confidence interval)   * C.I is calculated from bootstrapping method 
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Figure 16 FEVD (South Korea) 
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Figure 17 FEVD (Japan) 
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Comparing the IRFs from reduced-form VAR and OIRFs from SVAR, focusing on the causal 

impact on CO2 emissions, is summarized in Table 9. In South Korea, the reduced form VAR 

model indicates that changes in the energy mix do not have a significant impact on CO2 

emissions. However, the SVAR model shows that FE has a significant positive causal 

relationship with CO2 emissions contemporaneously.  

In the case of Japan, the IRFs from reduced form VAR model indicates that FE positively 

and significantly affect CO2 emissions, but RE also positively affect CO2 emissions though 

not significantly, raising questions about the effectiveness of energy policies. However, the 

OIRF results from the SVAR model show that FE has a significant positive causal impact 

and RE a significant negative causal impact on CO2 emissions at 10% C.I. 

The analysis results of the two models show very different results regarding energy policy 

impact. This is because the reduced VAR model does not consider the contemporaneous 

effects of the energy mix on CO2 emissions, leading to distorted results.16 

 

16 Appendix 1 and 2 show the simple contemporaneous correlation between ln 𝐺𝐷𝑃 and ln 𝐶𝑂2 and 

other variables without controlling for other variables. These Figures suggest that the 

contemporaneous impact between ln 𝐺𝐷𝑃  and ln 𝐶𝑂2  and other variables is high. Therefore, it 

implies analysing causal relationships between variables without considering the contemporaneous 

impact is likely to lead to significant errors. 



78 

 

 

Table  8 comparing the results of reduced form VAR and SVAR 

 

5 Conclusion and policy implications 

 

Economic growth, the environment, and energy mix are crucial policy areas that closely 

influence each other. The VAR model considers all variables in the system as endogenous. 

This approach enables the analysis of causal relationships in both bilateral and multilateral 

time series data. 

< South Korea > 

causality Reduced form VAR 

(IRF) 

SVAR 

(OIRF) 

RE → CO2 Positive but not statistically significant 

causality 

Negative but not statistically significant 

causality 

NE → CO2 Positive but not statistically significant 

causality 

Positive but not statistically significant 

causality 

FE → CO2 Positive but not statistically significant 

causality 

Positive and statistically significant causality 

GDP → CO2 Positive but not statistically significant 

causality 

Positive and statistically significant causality 

< Japan > 

causality Reduced form VAR 

(IRF) 

SVAR 

(OIRF) 

RE → CO2 Positive but not significant causality Negative and statistically significant 

causality 

NE → CO2 Positive but not statistically significant 

causality 

Negative but not statistically significant 

causality 

FE → CO2 Positive and statistically significant causality Positive and statistically significant causality 

GDP → CO2 Negative but not statistically significant 

causality 

Positive but not statistically significant 

causality 
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To identify the causal relationships between GDP, CO2 emissions, and the mix of renewable 

energy, non-renewable energy, and fossil energy, many studies have employed traditional 

VAR, i.e., reduced form VAR, and conducted Granger causality tests based on the results. 

However, the reduced form VAR, which do not consider contemporaneous impacts between 

variables, can lead to incorrect conclusions when analysing the causal relationships 

between them. This is because the energy mix tends to have a contemporaneous effect 

rather than a lagged effect on CO2 emissions and GDP, especially when the term period 

unit is long, such as a year. If the results of reduced form VAR yield incorrect conclusions, 

policymakers in energy policy and scholars analysing the effectiveness of energy policies 

might make erroneous policy decisions or misinterpret the effects of policies based on 

flawed analysis. For example, the IRF and Granger causality test result from reduced form 

VAR might show that FE does not have a significant causal effect on increasing CO2 

emissions, while RE does have a significant causal effect on increasing CO2 emissions 

(Belaïd and Zrelli, 2019; Aslan et al., 2022; Dogan and Seker, 2016; Dong et al., 2018). Such 

analysis results could fundamentally undermine the effectiveness of energy policy and 

significantly diminish trust in energy policy. In this study, we empirically demonstrated, 

using the cases of South Korea and Japan, how reduced form VAR tests can lead to 
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incorrect conclusions in analysing the causal relationships between economic growth, CO2 

emissions, and energy mix. On the other hand, we showed that SVAR can more accurately 

derive policy effects and causal relationships.  

These analysis results imply that caution is needed when applying the reduced form VAR 

model results in analysing the causal relationships between GDP, CO2 emissions, and the 

energy mix. Furthermore, applying the SVAR model can provides a more accurate method 

for deriving causal relationships. However, while the SVAR model offers the advantage of 

more accurately analysing reality, it also has the limitation that applying this model requires 

somewhat complex procedures and assumptions, such as identifying restrictions. 

Identifying restrictions must be based on theory rather than observed data, and if the 

identifying restrictions are incorrectly set, such as incorrect variable ordering, it can lead to 

erroneous analysis results. Therefore, identifying restrictions must be grounded on a solid 

and robust theoretical foundation. 
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Appendix 

1 Contemporaneous correlation between variables  

1.1 South Korea 

Contemporaneous correlation between ln GDP and other variables 

  

  

Contemporaneous correlation between ln CO2 and other variables 
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1.2 Japan  

 

Contemporaneous correlation between ln GDP and other variables 

  

  

Contemporaneous correlation between ln CO2 and other variables 
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2 the results of augmented Dickey–Fuller test for unit root (using 1 lag) 

2.1 South Korea 

 Level first difference 

 Without trend With trend Without trend With trend 

 statistic P-value statistic p-value statistic P-value statistic p-value 

ln RE 1.314 0.997 -0.343 0.989 -5.961 0.000 -6.192 0.000 

ln NE -2.737 0.068 -1.925 0.642 -4.544 0.000 -5.369 0.000 

ln FE -1.818 0.371 -1.719 0.742 -4.582 0.000 -4.748 0.001 

ln GDP -3.947 0.002 -0.153 0.992 -3.545 0.007 -5.323 0.000 

ln CO2 -3.811 0.003 -1.075 0.933 -4.283 0.001 -5.402 0.000 

 

2.2 Japan 

 level first difference 

 Without trend With trend Without trend With trend 

 statistic P-value statistic p-value statistic P-value statistic p-value 

ln RE 1.124 0.995 -0.578 0.980 -5.943 0.000 -6.317 0.000 

ln NE -2.086 0.250 -1.820 0.695 -3.054 0.030 -3.329 0.062 

ln FE -1.466 0.550 -2.089 0.552 -5.485 0.000 -5.459 0.000 

ln GDP -2.803 0.057 -0.785 0.967 -4.252 0.007 -5.206 0.000 

ln CO2 -1.833 0.364 -1.725 0.740 -5.558 0.000 -5.459 0.000 

According to the results of ADF test, they are nonstationary at level but all stationary at first 

difference. 

 

3 determine the optimal number of lags 

3.1 results of lag-order selection criteria for South Korea 

Lag FPE AIC HQIC SBIC 

0 5.3e-11 -9.47946 -9.405* -9.2807* 

1 4.0e-11* -9.75676* -9.31001 -8.56417  

2 6.0e-11 -9.40168 -8.58263 -7.21526 

3 8.9e-11 -9.10374 -7.9124 -5.92349 

4 1.3e-10 -8.94455 -7.38092 -4.77048 

 

3.2 results of lag-order selection criteria for Japan 
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According to lag-order selection criteria, optimal lag for both countries is 1. 

 

 

 

 

 

 

  

Lag FPE AIC HQIC SBIC 

0 6.20E-13 -13.9173 -13.841* -13.7062* 

1 5.7e-13* -14.0118* -13.5538 -12.7451 

2 1.00E-12 -13.5002 -12.6606 -11.178 

3 2.30E-12 -12.8538 -11.6325 -9.47605 

4 2.90E-12 -12.9694 -11.3665 -8.53609 



85 

 

Reference 

 

Akbostancı, E., Türüt-Aşık, S., Tunç, G.İ, 2009. The relationship between income and environment in 

Turkey: Is there an environmental Kuznets curve? Energy Policy, 37, 861–867. 

Aslan, A., Ocal, O., Ozsolak, B., Ozturk, I., 2022. Renewable energy and economic growth 

relationship under the oil reserve ownership: Evidence from panel VAR approach. Renewable 

Energy, 188, 402–410. 

Awaworyi Churchill, S., Inekwe, J., Ivanovski, K., Smyth, R., 2018. The Environmental Kuznets Curve 

in the OECD: 1870–2014. Energy Economics, 75, 389–399. 

Balsalobre-Lorente, D., Shahbaz, M., Roubaud, D., Farhani, S., 2018. How economic growth, 

renewable electricity and natural resources contribute to CO2 emissions? Energy Policy, 113, 356–

367. 

Begum, R.A., Sohag, K., Abdullah, S.M.S., Jaafar, M., 2015. CO2 emissions, energy consumption, 

economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 

594–601. 

Belaïd, F., Zrelli, M.H., 2019. Renewable and non-renewable electricity consumption, environmental 

degradation and economic development: evidence from Mediterranean countries. Energy Policy, 

133, 110929. 

Blanchard, O.J., Quah, D., 1988. The dynamic effects of aggregate demand and supply 

disturbances. 

Bruns, S.B., Moneta, A., Stern, D.I., 2021. Estimating the economy-wide rebound effect using 

empirically identified structural vector autoregressions. Energy Economics, 97, 105158. 

Calcagnini, G., Giombini, G., Travaglini, G., 2016. Modelling energy intensity, pollution per capita 

and productivity in Italy: A structural VAR approach. Renewable and Sustainable Energy Reviews, 

59, 1482–1492. 

Charfeddine, L., Kahia, M., 2019. Impact of renewable energy consumption and financial 

development on CO2 emissions and economic growth in the MENA region: a panel vector 

autoregressive (PVAR) analysis. Renewable Energy, 139, 198–213. 



86 

 

Christiano, J.L., Eichenbaum, M., Evans, L.C., 1999. MONETARY POLICY SHOCKS: WHAT HAVE WE 

LEARNED, in: Handbook of Macroeconomics, Anonymous . 

Dogan, E., Seker, F., 2016. Determinants of CO2 emissions in the European Union: The role of 

renewable and non-renewable energy. Renewable Energy, 94, 429–439. 

Dong, K., Sun, R., Jiang, H., Zeng, X., 2018. CO2 emissions, economic growth, and the 

environmental Kuznets curve in China: what roles can nuclear energy and renewable energy play? 

Journal of Cleaner Production, 196, 51–63. 

Granger, C.W., 1969. Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica: journal of the Econometric Society, 424–438. 

Işık, C., Ongan, S., Ozdemir, D., Jabeen, G., Sharif, A., Alvarado, R., et al., 2024. Renewable energy, 

climate policy uncertainty, industrial production, domestic exports/re-exports, and CO2 emissions 

in the USA: a SVAR approach. Gondwana Research, 127, 156–164. 

Levendis, J.D., 2018. Time series econometrics, Springer,. 

Luzzati, T., Orsini, M., 2009. Investigating the energy-environmental Kuznets curve. Energy, 34, 

291–300. 

Narayan, P.K., Narayan, S., Prasad, A., 2008. A structural VAR analysis of electricity consumption 

and real GDP: Evidence from the G7 countries. Energy Policy, 36, 2765–2769. 

Oryani, B., Koo, Y., Rezania, S., 2020. Structural vector autoregressive approach to evaluate the 

impact of electricity generation mix on economic growth and CO2 emissions in Iran. Energies, 13, 

4268. 

Özokcu, S., Özdemir, Ö, 2017. Economic growth, energy, and environmental Kuznets curve. 

Renewable and Sustainable Energy Reviews, 72, 639–647. 

Pan, X., Uddin, M.K., Han, C., Pan, X., 2019. Dynamics of financial development, trade openness, 

technological innovation and energy intensity: Evidence from Bangladesh. Energy, 171, 456–464. 

Sadorsky, P., 2009. Renewable energy consumption, CO2 emissions and oil prices in the G7 

countries. Energy Economics, 31, 456–462. 

Saidi, K., Omri, A., 2020. Reducing CO2 emissions in OECD countries: Do renewable and nuclear 

energy matter? Progress in Nuclear Energy, 126, 103425. 



87 

 

Shahbaz, M., Mutascu, M., Azim, P., 2013. Environmental Kuznets curve in Romania and the role of 

energy consumption. Renewable and Sustainable Energy Reviews, 18, 165–173. 

Shahbaz, M., Ozturk, I., Afza, T., Ali, A., 2013. Revisiting the environmental Kuznets curve in a 

global economy. Renewable and Sustainable Energy Reviews, 25, 494–502. 

Sims, C.A., 1980. Macroeconomics and reality. Econometrica: journal of the Econometric Society, 

1–48. 

Tiwari, A.K., 2011. A structural VAR analysis of renewable energy consumption, real GDP and CO2 

emissions: evidence from India. Economics Bulletin, 31, 1793–1806. 

 

 

 



88 

 

 

 

 

(Chapter 3) The Impact of Energy Mix and Economic Growth on CO₂ Emissions: A 

Comparison of Countries with and without Nuclear Power Plants 

 

  



89 

 

 

1 Introduction 

 

In the last few decades, climate change has been identified as the major environmental 

problem facing the world (IPCC 2018; McKinsey Global Institute 2020). In recent years, 

there has been increased global attention to the need for reducing carbon dioxide (CO2) 

emissions from energy production and other industrial activities. Energy is a crucial 

requirement for economic production, thereby contributing to economic expansion and 

societal progress (Adhikari and Chen 2012; Apergis and Danuletiu 2012; Gbadebo and 

Okonkwo 2009). However, it also stands as a significant contributor to the emission of 

greenhouse gases (Belaïd and Zrelli 2019). The energy sector is the most important source 

of CO2 emissions. Energy is used in three sectors: electricity, heating, and transportation. 

The electrification of economies is gradually expanding through the widespread adoption 

and utilization of electricity as a primary source of energy for various applications and 

industries in both the clean energy transition and user convenience (Marques et al. 2016; 

IEA). In this regard, this paper's focus is on the electricity sector among energy consumption 

areas, with the aim of analyzing its impact on CO2 emissions. There are three main energy 

sources in electricity generation: fossil fuel generation, renewable energy generation and 

nuclear energy generation. Renewable and nuclear energies, unlike fossil fuel energy, are 
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considered to emit negligible amounts of CO2 and play an important role in mitigating 

climate change. Fossil fuel generation, renewable energy generation and nuclear energy 

generation have different effects on CO2 emissions and have the potential to even impose 

further effects in the future. Therefore, not only changing total electricity consumption but 

also changing the electricity mix among fossil fuel generation, renewable energy 

generation and nuclear energy generation critically influences CO2 emissions in a country.  

On the other hand, the correlation between economic growth and environmental pollution 

has been investigated within the framework of the Environmental Kuznets Curve (EKC). The 

original proposition of the EKC hypothesizes an inverted U-shaped relationship between 

environmental pollution, such as CO2 emissions, and GDP per capita. Grossman and 

Krueger (1991), in a study analyzing the possible environmental impacts of the North 

American Free Trade Agreement (NAFTA) in the early 1990s, argued that there may be a 

relationship between per capita income and per capita environmental pollution such that 

it initially increases and subsequently decreases after it reaches a specific threshold in a 

reverse-U-shaped pattern. According to this hypothesis, the degradation of the 

environment escalates with respect to GDP per capita during the early stages of economic 

growth but diminishes after it reaches a certain threshold. The veracity of this hypothesis 

remains uncertain, depending on the estimation technique, data timeframe and type, and 
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country attributes. Numerous studies have been conducted to assess the efficacy of the 

EKC while controlling for variables such as energy consumption, population, trade openness, 

urbanization, renewable energy or fossil fuel energy. Thus far, various studies have been 

undertaken to analyze the influence of GDP and energy factors on CO2 emissions.  

Nuclear and renewable power are considered non-CO2-emitting electricity sources. Nuclear 

power has several advantages, including high energy density, reliability, and long-term 

economic benefits, but it faces challenges such as radioactive waste, security threats, and 

high initial costs. Currently, around 30 countries operate nuclear power plants, with only 

11 of the 38 OECD countries doing so. Whether nuclear power is part of a country’s energy 

mix can significantly impact CO2 emissions in various ways.  

The relationship between the presence of nuclear power systems and the validity of the 

EKC hypothesis remains unexplored. While studies exist on how oil production affects the 

relationship between energy mix, economic growth, and CO2 emissions (Aslan et al., 2022), 

none have analyzed nuclear power's influence. Nuclear systems are distinct due to their 

high entry barriers, acceptance issues due to intense opposition from local residents and 

strong path dependence, as their establishment creates vested interests, making both 

adoption and phase-out challenging (Fouquet, 2016). Analyzing how nuclear power 
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impacts the EKC hypothesis offers valuable insights into this dynamic, shedding light on 

its role in shaping sustainable energy policies. 

This study tests the validity of the Environmental Kuznets Curve (EKC) hypothesis in two 

groups of OECD countries: those with nuclear power plants and those without, using annual 

data from 1971 to 2021. It also examines the effects of changes in the energy mix on CO2 

emissions within the EKC framework. By comparing nuclear, renewable, and fossil fuel 

generation, the study determines which energy source is most effective in reducing CO2 

emissions. This analysis is important not only from a scientific perspective but also from a 

policy viewpoint, as it helps assess the effects of energy mix changes on emissions. 

The analysis is conducted using a dynamic panel Auto-Regressive Distributed Lag (ARDL) 

model, with results checked for robustness using sub-sample group. The findings show 

that the EKC hypothesis holds in countries with nuclear power plants but not in those 

without. In both groups, increased electricity consumption leads to higher CO2 emissions. 

Substituting fossil fuel electricity (FE) with renewable electricity (RE) or nuclear electricity 

(NE) reduces CO2 emissions in nuclear-powered countries. While RE is generally more 

effective than FE in reducing emissions in nuclear-powered countries, in countries with a 

high reliance on nuclear power, substitution with NE proves to be more effective than with 

RE. 
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 In non-nuclear countries, replacing FE with RE also significantly reduces CO2 emissions, 

and the reduction rate of RE is higher than that of RE in nuclear-powered countries. Trade 

openness had no significant effect on CO2 emissions, while population growth had a 

notable reduction impact. 

The remainder of the paper is structured as follows: Section 2 reviews the relevant literature; 

Section 3 describes the data and methodology; Section 4 presents the empirical analysis 

and primary results; and Section 5 concludes with a summary and policy implications. 

 

 

2 Literature Review 

 

Many scholars have investigated the relationship between economic growth and 

environmental degradation using time-series data from individual countries or groups of 

several countries. The analyses have been expanded to account for various factors, 

including energy consumption, urbanization, financial development, renewable energy, 

fossil fuel energy, nuclear energy, trade openness, public expenditures, tourism revenue, oil 

consumption, gas consumption, and other factors. 

Mensah et al. (2019) examined the causal links among carbon emissions, economic growth, 

fossil fuel energy consumption and oil prices by using a panel of 22 African countries 
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during the 1990–2015 period. They used the PMG panel ARDL estimation method to 

explore the causalities among variables in the long term and short term. 

Using data from 151 countries spanning the years 1971 to 2013, Kibria et al. (2019) 

analyzed the correlation between the proportion of fossil fuels in the energy mix and per 

capita income. They discovered a polynomial connection between the fossil fuel percentage 

and income, which they referred to as the "Energy Mix Kuznets Curve" (EMKC). 

Koc and Bulus (2020) conducted research on the relationships between per capita GDP, per 

capita energy consumption, per capita renewable energy consumption, trade openness, 

and per capita CO2 emissions in Korea from 1971 to 2017. Their findings indicate an N-

shaped relationship between per capita CO2 emissions and per capita GDP, which does not 

support the EKC hypothesis in Korea. They concluded that when per capita energy 

consumption increases, per capita CO2 emissions increase; however, when per capita 

renewable energy consumption or trade openness increases, per capita CO2 emissions 

decrease. Zhang (2018) examined the correlation between CO2 emissions, trade openness, 

and the import and export of goods in Korea. His analysis revealed a positive correlation 

between CO2 emissions and trade openness, exports, and imports. Additionally, the author 

concluded that an EKC exists in Korea. The impact of nuclear and renewable energy sources 

on environmental quality in Korea was studied by Pata and Kartal (2023). They argue that 
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nuclear energy has a positive effect on environmental quality, while renewable energy does 

not have a significant long-term impact on the environment. Sufyanullah et al. (2022) 

conducted an analysis of the connection between urbanization and CO2 emissions in 

Pakistan for the 1975–2018 period. Their findings indicated that an increase in urbanization 

resulted in a subsequent increase in CO2 emissions. Eldowma et al. (2023) examined the 

case of Sudan from 1971 to 2019 and found strong correlations among population, CO2 

emissions, and GDP. While population growth contributed to economic expansion, it also 

led to increased electricity consumption and, subsequently, higher CO2 emissions. Marques 

et al. (2016) investigated the relationship between the electricity mix and economic growth 

in France on monthly and annual bases. They indicated that nuclear energy generation had 

a positive impact on economic growth and a reduction in CO2 emissions, whereas 

renewable energy generation had a negative impact on economic growth. 

Shaari et al. (2020) analyzed the impact of the consumption of oil and gas among energy 

usage on CO2 emissions in 20 Organization of Islamic Cooperation (OIC) countries. They 

concluded that while GDP growth led to a long-term increase in CO2 emissions, it had no 

short-term effect. On the other hand, population growth temporarily reduced CO2 

emissions but had no long-term impact. Furthermore, they found that the consumption of 

oil and gas led to an increase in CO2 emissions in both the short and long run, with oil 
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consumption having a greater effect on increasing CO2 emissions than gas consumption. 

Sreenu (2022) analyzed the impact of key macroeconomic variables—FDI, crude oil price, 

and GDP—on CO2 emissions in India using data spanning 1990 to 2020. His research results 

support the EKC hypothesis in India. He also indicated that shocks in crude oil prices have 

a significant influence on CO2 emissions, while FDI inflows support the 'pollution haven' 

hypothesis. Dauda et al. (2021) concluded that there is an inverted U-shaped relationship 

between innovation and CO2 emissions and that renewable energy use lessens CO2 

emissions across nine African countries during the period from 1990 to 2016. 

Belaïd and Zrelli (2019) researched the causal relationships between renewable energy 

electricity, non-renewable energy electricity, GDP, and CO2 emissions for 9 Mediterranean 

countries during the 1980-2014 period. The analysis results showed that non-renewable 

energy electricity consumption and GDP contribute to an increase in CO2 emissions, while 

renewable energy generation consumption reduces CO2 emissions. The key findings of 

these researches are summarized in Table 1. 

 

Author(s) Period Country 

/region 

Other factors 

considered 

Methodology Results 

Marques et al. 

(2016) 

(2010-2014) 

monthly 

France GDP, REE, NE ARDL NE↑→ GDP↑, CO2↓ 

REE↑→ GDP↑, CO2↓, 

Pata and Kartal 

(2023) 

(1977-2018) Korea GDP, NE, RE ARDL LCC, EKC valid 

NE↑→ CO2↓, 

RE↑↛CO2↓, 

Zhang (2018) (1971-2013) Korea GDP, non-FF, TO ARDL EKC valid, 

Non-FF↑→ CO2↓, 

TO↑→CO2↓, 
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Mensah et al. 

(2019) 

(1990-2015) 22 African 

countries 

GDP, FF, oil price PMG ARDL FF ↔ GDP, CO2 

Oil price → GDP, fossil fuel, CO2 

Koc and Bulus 

(2020) 

(1971-2017) Korea GDP, RE, TO, EC ARDL bounds test EKC invalid, 

GDP, EC↑→CO2↑, 

RE, TO↑→CO2↓ 

Shaari et al. 

(2020) 

(1990-2017) 20 OIC 

countries 

GDP, population 

oil consumption, 

gas consumption 

Panel ARDL (LR) GDP, oil, gas↑→CO2↑, 

population↑→CO2↓ 

(SR) GDP, population↑↛ CO2↑ 

Oil, gas↑→CO2↑ 

Dauda et al. 

(2021) 

(1990-2016) 9 African 

countries 

GDP, innovation, TO GMM, OLS Inverted U-shape between innovation 

and CO2 

RE↑→CO2↓ EKC valid 

Sreenu (2022) (1990-2020) India GDP, crude oil use, FDI 

inflows 

ARDL, 

Non-linear ARDL 

EKC valid, 

Crude oil price↑→CO2↓ 

Crude oil use↑→CO2↑ 

FDI inflows↑→CO2↑ 

Belaïd and Zrelli 

(2019) 

(1980-2014) 9 Mediterra-

nean countries 

GDP, REE, non-REE 

 

PMG ARDL (LR) non-REE↔CO2 

GDP→ CO2, non-REE 

REE→ CO2 

(SR) GDP↔REE↔ CO2 

Non-REE↔GDP↔REE 

Sufyanullah et al. 

(2022) 

(1975-2018) Pakistan GDP, EC, urbanization ARDL VECM GDP, urbanization↑→ CO2↑ 

Eldowman et al. 

(2023) 

(1971–2019) Sudan GDP, population, 

electricity consumption 

ARDL population↑→GDP↑→electricity 

consumption↑→ CO2↑ 

      

*Note: TO(trade openness), RE(renewable energy), REE(renewable energy electricity) NE(nuclear energy), FF(fossil fuel energy), EC(energy 

consumption), FF(fixed-effect model), RE(random-effect model), LCC(load capacity curve), OIC(Organization of Islamic Cooperation), 

LR(long run), SR(short run) 

Table  1 Empirical literature on the relation between CO2 emissions and other factors 

 

 

3 Data and methodology 

 

3.1 Data and model 

 

This study investigates two groups of OECD member countries: one group of 12 countries 

with nuclear power plants and another group of 10 countries without nuclear power plants1. 

The analysis covers a period of 51 years, from 1971 to 2021. 

Countries with nuclear generation (12) Countries without nuclear power plants (10) 

1 

2 

Belgium 

Finland 

1 

2 

Australia 

Austria 

 
1 Among the 38 OECD members, countries that previously operated nuclear power plants but no longer do, as 

well as countries with insufficient data, are excluded from this research. 
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3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

France 

Germany 

Japan 

Korea 

Mexico 

Netherlands 

Spain 

Sweden 

UK 

USA 

3 

4 

5 

6 

7 

8 

9 

10 

 

Chile 

Colombia 

Costa Rica 

Denmark 

Greece 

Luxembourg 

Norway 

Portugal 

Table  2 analysis target of two groups of countries 

 

The analysis model is primarily based on the Stochastic Impacts by Regression on 

Population, Affluence, and Technology (STIRPAT) model, an extended version of the IPAT 

model. The IPAT model suggests that environmental impact (I) is determined by three 

factors: population (P), affluence (A), and technology (T), as represented by the following 

equation. 

𝐼 = 𝑃 ×  𝐴 × 𝑇        (1) 

The STIRPAT model, introduced by Dietz and Rosa (1994) as an extended version of the 

IPAT model, is expressed as follows. Additional regressors can be included in the equation 

depending on the research objectives. 

𝐼 =  𝛼 𝑃𝛽1𝐴𝛽2𝑇𝛽3      (2) 

When eq (2) is transformed into logarithmic form, it results in eq (3). 

 ln 𝐼 = ln 𝛼 + 𝛽1 ln 𝑃 + 𝛽2 ln 𝐴 +  𝛽3 ln 𝑇    (3) 
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Based on the STIRPAT model, the following equation is derived.  

𝑙𝑛𝐶𝑂2  𝑖,𝑡 = 𝛼0 + 𝛼1 𝑙𝑛𝐺𝐷𝑃𝑖,𝑡 + 𝛼2(𝑙𝑛𝐺𝐷𝑃𝑖,𝑡)
2

+  𝛼3 ln 𝐸𝐶𝑖,𝑡 +  𝛼4  ln 𝑅𝐸𝑖,𝑡  +  𝛼5  ln 𝑁𝐸𝑖,𝑡 

+  𝛼6  𝑙𝑛 𝑇𝑂𝑖,𝑡 +  𝛼7  𝑙𝑛 𝑃𝑂𝑃𝑖,𝑡 + 𝛽𝑖 +  𝜖𝑖,𝑡       (4) 

In the eq (4), 𝐶𝑂2 denotes carbon emissions per capita, 𝐸𝐶 denotes electricity consumption 

per capita2 , 𝑅𝐸 denotes renewable energy generation per capita, 𝑁𝐸  denotes nuclear 

energy generation per capita, 𝑇𝑂 denotes trade openness and 𝑃𝑂𝑃 denotes population. 𝑖 

denotes the country, and 𝑡 denotes the year. The details of the dataset are summarized in 

Table 2. All the series used in the empirical analysis are in natural logarithm form.3 𝛽𝑖 

represents the specific effect of a certain country 𝑖 on 𝐶𝑂2.  

 

 

 
2 Electricity is produced from fossil fuel, nuclear energy, or renewable energy sources. Therefore, total 

electricity consumption is the sum of fossil fuel generation (FE), nuclear energy generation (NE), and renewable 

energy generation (RE). In other words, EC = FE + NE + RE. 

3 When transforming logarithms, values of 0 are lost and become missing data. To avoid this problem, one is 

added to each value of RE and NE. It means that in eq (1), ‘ln 𝑅𝐸’ and ‘ln 𝑁𝐸’ actually refer to ln(𝑅𝐸 + 1) and 

ln(𝑁𝐸 + 1), respectively. 

Variable Abbreviation Unit Period Source 

CO2 emission per capita CO2 Ton per capita 1971-2021 OECD 

Real GDP per capita GDP US dollar (2015 constant) 1971-2021 OECD 

Electricity consumption per 

capita 
EC kWh per capita 1971-2021 OECD 

Renewable Energy generation 

per capita 
RE kWh per capita 1971-2021 OECD 

Nuclear energy generation per 

capita 
NE kWh per capita 1971-2021 OECD 

Trade openness 

=(export+import)/GDP*100 
TO % 1971-2021 OECD 
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In eq (4), fossil fuel generation is omitted. The electricity mix consists of three energy 

sources: fossil fuel, nuclear energy, and renewable energy. Electricity consumption, i.e., the 

sum of fossil fuel generation, nuclear energy generation and renewable energy generation, 

is incorporated as an explanatory variable in eq (4). Therefore, adding fossil fuel generation 

as an explanatory variable to eq (4) may generate serious multicollinearity and cause 

unclear analysis results when interpreting eq (4). 

Since 𝐸𝐶 is included and ‘fossil fuel generation’ is not included in the explanatory variables 

in eq (4), we can interpret the results such that 𝛼4 represents the percent change in CO2 

emissions when renewable energy generation is increased by 1% as a replacement for 

fossil fuel generation, while 𝛼5 represents the percent change in CO2 emissions when 

nuclear energy generation is increased by 1% as a replacement for fossil fuel generation. 

In essence, 𝛼4 and 𝛼5 signify the effects on CO2 emissions when fossil fuel generation is 

replaced by renewable energy generation and nuclear energy generation, respectively. 

Coefficients 𝛼1 and 𝛼2 are related to the EKC hypothesis. If 𝛼1> 0 and 𝛼2 = 0, a positive 

linear relationship exists between CO2 emissions and economic growth, implying that the 

EKC hypothesis does not hold. Conversely, if 𝛼1> 0 and 𝛼2 < 0, the EKC hypothesis holds. 

Population POP Number 1971-2021 OECD 

Table  3 Description and sources of data 
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The coefficients 𝛼4  and 𝛼5  represent the effects of changes in the electricity mix, as 

explained previously. 

 

 

Table 4 presents descriptive statistics of the explanatory variables and the dependent 

variable. 

 

3.2 Dynamic ARDL panel model 

 

With respect to the time series panel data, there are two models: the static panel model 

and the dynamic panel model. The static panel model estimators are OLS estimators, and 

the fixed effect model and the random effect model, are representative examples of the 

static panel model. The static panel model assumes a static relationship between variables. 

However, if there is a unit root in the time series data, the OLS estimator may not be a 

consistent estimator, and a spurious regression problem may occur with the OLS estimator. 

 Group of Countries with nuclear power plants Group of countries without nuclear power plants 

Variables Obs. Mean S.D Max Min Obs. Mean S.D Min Max 

𝒍𝒏 𝑪𝑶𝟐 612 2.056 0.500 0.476 3.097 510 1.654 0.974 -0.371 3.906 

𝒍𝒏 𝑮𝑫𝑷 612 10.151 0.589 7.670 11.033 510 9.925 0.977 7.822 11.630 

(𝒍𝒏 𝑮𝑫𝑷)𝟐 612 103.386 11.459 58.828 121.717 510 99.460 19.131 61.180 135.256 

𝒍𝒏 𝑬𝑪 612 8.794 0.717 5.770 9.806 510 8.230 0.991 6.040 10.364 

𝒍𝒏 𝑹𝑬 612 6.592 1.716 0.000 9.290 510 7.111 1.532 1.672 10.362 

𝒍𝒏 𝑵𝑬 612 6.747 2.100 0.000 9.095 510 0.000 0.000 0.000 0.000 

𝒍𝒏 𝑻𝑶 612 8.363 0.645 6.757 9.775 510 8.538 0.694 7.161 10.561 

𝒍𝒏 𝑷𝑶𝑷 612 17.467 1.144 15.344 19.620 510 15.756 1.147 12.744 17.757 

Table  4 Descriptive statistics 
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Due to these issues, the dynamic panel model is employed in this context. The dynamic 

panel model addresses these issues of serial correlation and unit root by including lagged 

dependent and explanatory variables as explanatory variables. Among the various dynamic 

panel models available, this research employs the panel autoregressive distributed lag 

(ARDL) model. This model evaluates the cointegration and long-term equilibrium 

relationships among variables and captures dynamic effects in both the long and short 

term. 

Pesaran et al. (1995) introduced the mean group (MG) estimator for panel data, which 

allows for variation in intercepts, slopes of the explanatory variables, and error variance 

across different groups of countries. Another study by Pesaran et al. (1999) developed the 

pooled mean group (PMG) estimator, which combines both average and pooled 

characteristics for panel data analysis. The PMG method allows for different intercepts, 

coefficients of explanatory variables, and error variations in the short run across country 

groups, while the coefficients of the explanatory variables remain similar in the long run 

across different country groups. 

The generalized 𝐴𝑅𝐷𝐿(𝑝, 𝑞, 𝑞, … , 𝑞) model for t=1, 2, …, T periods and i=1, 2, …, N country 

groups is as follows. 

 

 𝑙𝑛𝐶𝑂2 𝑖,𝑡 =  ∑ 𝜆𝑖𝑘
𝑝
𝑘=1 𝑙𝑛𝐶𝑂2 𝑖,𝑡−𝑘 +  ∑ 𝛿𝑖𝑘

𝑞
𝑘=0 𝑋𝑖,𝑡−𝑘 + 𝜔𝑖 +  𝜀𝑖𝑡           (5) 
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The panel 𝐴𝑅𝐷𝐿(𝑝, 𝑞, 𝑞, … , 𝑞) model mentioned above can be explained as follows. 𝑋𝑖𝑡 

represents the (𝑘 × 1) vector of explanatory variables for country group 𝑖. The fixed effect 

of group 𝑖 is denoted by 𝜔𝑖. The coefficients of the lagged dependent variable 𝑙𝑛𝐶𝑂2 𝑖,𝑡, 

i.e., 𝜆𝑖𝑘, indicate the scalars in the equation. Finally, the coefficient vector (1× k) is indicated 

by 𝛿𝑖𝑘 . 

In general, the representation of eq (5) in the form of a vector error correction model 

(VECM) at equilibrium can be reparametrized as follows (Mensah et al. 2019): 

Δln𝐶𝑂2 𝑖,𝑡 =  ∑ 𝜆𝑖𝑘
𝑝−1
𝑘=1 Δln𝐶𝑂2 𝑖,𝑡−𝑘 + ∑ 𝛿𝑖𝑘

′𝑞−1
𝑘=0 Δ𝑋𝑖,𝑡−𝑘  +  𝜑𝑖(𝑙𝑛 𝐶𝑂2 𝑖,𝑡−1 +  𝛽𝑖

′ 𝑋𝑖,𝑡−1) + 𝜔𝑖 +  𝜀𝑖𝑡      (6) 

 

In eq (6), 𝜆𝑖𝑘 , 𝛿𝑖𝑘
′  represent short-run coefficients. (𝑙𝑛𝐶𝑂2 𝑖,𝑡−1 +  𝛽𝑖

′ 𝑋𝑖,𝑡−1)  is the error 

correction term (ECT), and 𝜑𝑖 represents the group-specific error correction coefficient, i.e., 

the speed of adjustment, which is expected to be negative. 𝛽𝑖
′ indicates the long-run 

coefficient. 

The following equation relies on eq (6) and encompasses all the variables that are 

considered in the model of eq (4). 

Δln𝐶𝑂2 𝑖,𝑡 =  𝛽0 + ∑ 𝜆𝑖𝑘

𝑝−1

𝑘=1

Δln𝐶𝑂2 𝑖,𝑡−𝑘 + ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

∆ ln 𝐺𝐷𝑃𝑖,𝑡−𝑘 + ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

∆(ln 𝐺𝐷𝑃𝑖,𝑡−𝑘)
2

+ ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

Δ ln 𝐸𝐶𝑖,𝑡−𝑘 

 +  ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

Δ ln 𝑅𝐸𝑖,𝑡−𝑘 +  ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

Δ ln 𝑁𝐸𝑖,𝑡−𝑘  + ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

𝛥 𝑙𝑛 𝑇𝑂𝑖,𝑡−𝑘 + ∑ 𝛿𝑖𝑘
′

𝑞−1

𝑘=0

𝛥 𝑙𝑛 𝑃𝑂𝑃𝑖,𝑡−𝑘   

+ 𝜑𝑖[ln 𝐶𝑂2 𝑖,𝑡−1 + 𝛽𝑖
′  (ln 𝐺𝐷𝑃𝑖,𝑡−1,  (ln 𝐺𝐷𝑃𝑖,𝑡−1)2 , ln 𝐸𝐶𝑖,𝑡−1,  ln  𝑅𝐸𝑖,𝑡−1,  ln 𝑁𝐸𝑖,𝑡−1 , 𝑙𝑛  𝑇𝑂𝑖,𝑡−1,  𝑙𝑛 𝑃𝑂𝑃𝑖,𝑡−1)] 

+ 𝜔𝑖 + 𝜀𝑖𝑡           (7) 
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4 Results 

 

Countries around the world are economically interconnected, which may lead to cross-

sectional dependence. In such cases, estimators can be biased and inconsistent, leading to 

invalid inferences. Therefore, the first step is to conduct a cross-sectional dependence test. 

 

 

According to the Table 5, all variables in both groups of countries exhibit cross-sectional 

dependence. 

Next, panel unit root test is conducted. The first-generation unit root test such as LLC, IPS 

test assume cross-sectional independence, which can lead to misleading results when 

cross-sectional dependence is present. Therefore, second-generation unit root test, such 

as Pesaran (2007)’s CIPS test, which is designed to handle cross-sectional dependence, is 

applied here to check for unit root in the data. 

 
Group of Countries  

with nuclear power plants 

Group of Countries  

without nuclear power plants 

Variables CD test p-value CD test p-value 

𝒍𝒏 𝑪𝑶𝟐 13.083 0.000 12.368 0.000 

𝒍𝒏 𝑮𝑫𝑷 56.525 0.000 44.538 0.000 

(𝒍𝒏 𝑮𝑫𝑷)𝟐 56.527 0.000 44.481 0.000 

𝒍𝒏 𝑬𝑪 50.042 0.000 33.058 0.000 

𝒍𝒏 𝑹𝑬 41.191 0.000 35.563 0.000 

𝒍𝒏 𝑵𝑬 41.897 0.000 - 0.000 

𝒍𝒏 𝑻𝑶 57.076 0.000 45.409 0.000 

𝒍𝒏 𝑷𝑶𝑷 52.902 0.000 43.531 0.000 

Table  5 the results of Pesaran (2015)'s CD test 
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Table 6 presents the results of the CIPS unit root test. For the ARDL model to be applicable, 

all variables must be stationary either at level (I(0)) or at first difference (I(1)). Except for ln 

POP in the constant case for the non-nuclear power group, all variables are found to be 

either I(0) or I(1) 4. This indicate that all variables are stationary at level or first differences.    

Next, table 7 displays the results of the Pedroni, Kao and Westerlund cointegration tests5. 

The analyses of the cointegration test reveal the presence of cointegration between the 

dependent variable and the explanatory variables in both country groups.  

 

 
group of countries with nuclear 

power plants 

group of countries without nuclear 

power plants 

 Statistic Statistic 

Pedroni cointegration test 

Modified Phillips-Perron t 

Phillips-Perron t 

 

2.0503 ** 

-0.8276 

 

-0.0443 

-2.8720*** 

 
4 When applying first generation unit root test (ips) for ln POP, the results are I(1) in constant and 

constant+trend case. 
5 When cross-sectional dependence exists in panel data, the Westerlund panel cointegration test (2007) is 

generally a more appropriate test for cointegration. However, due to the large number of variables in this model, 

it is not feasible to apply the Westerlund test. Therefore, traditional cointegration tests were conducted instead.  

 group of countries with nuclear power plants group of countries without nuclear power plants 

 At level At first difference At level At first difference 

 constant 
Constant 

+trend 
constant 

Constant 

+trend 
constant 

Constant 

+trend 
constant 

Constant 

+trend 

ln CO2 -2.385** -2.853** -6.144*** -6.340*** -2.171 -2.451 -5.886*** -6.256*** 

ln GDP -2.376** -2.602 -5.117*** -5.364*** -1.933 -1.944 -4.562*** -4.843*** 

(ln GDP)2 -2.390** -2.632 -5.163*** -5.358*** -1.923 -1.926 -4.554*** -4.816*** 

ln EC -1.983 -2.561 -6.016*** -6.279*** -2.082 -2.214 -5.737*** -6.372*** 

ln RE -2.668*** -2.905** -6.125*** -6.358*** -2.532** -2.616 -5.734*** -5.971*** 

ln NE -2.823*** -3.191*** -5.212*** -5.185*** - - - - 

ln TO -2.227* -2.280 -5.687*** -5.825*** -2.698*** -2.772* -5.425*** -5.893*** 

ln POP -1.682 -1.991 -2.823*** -3.019*** -0.869 -2.031 -2.077 -2.786* 

Table  6 Results of the panel unit root test (CIPS) 
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Kao cointegration test 

Dickey–Fuller t 

Unadjusted modified DF t 

Unadjusted Dickey–Fuller t 

 

-1.4576* 

-1.3737* 

-1.5140* 

 

0.0297 

-1.8540** 

-1.4886* 

Westerlund cointegration test 

Variance ratio 

 

-1.5832** 

 

-2.0033** 

Table  7 Results of panel cointegration test 

 

The unit root and cointegration test results conducted earlier now indicate the feasibility 

of applying a panel ARDL VECM using the same dataset.  

Table 8 presents the findings from the panel ARDL VECM model, estimated using the STAT 

statistical package. This model captures both the long-run and short-run effects of the 

explanatory variables. This study examines how the presence or absence of nuclear power 

plants affects the relationships between CO2 emissions and various factors, such as GDP, 

electricity consumption, nuclear energy generation, renewable energy generation, trade 

openness, and population. Two distinct panel ARDL models are employed: the pooled 

mean group (PMG) and the mean group (MG) estimations. To determine the more 

appropriate estimation method between PMG and MG, a Hausman test is conducted. The 

following analysis focuses on the long-run relationships in light of the long-term 

equilibrium. 

For the group of countries with nuclear power plants, the Hausman chi-square test 

indicates that the difference in coefficients between the PMG and MG models is systematic, 

suggesting that the MG estimation is more appropriate than the PMG estimation. 
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According to the MG analysis findings, the EKC hypothesis holds over the long term in the 

dynamic panel model in the group countries with nuclear power plants, with electricity 

consumption, the electricity mix, trade openness and population held constant. The long-

run coefficient of (ln 𝐺𝐷𝑃)2 is negative and statistically significant at the 5% level, whereas 

the coefficient of ln 𝐺𝐷𝑃 is positive and statistically significant at the 10% level. 

The results of this analysis indicate that, with electricity consumption and the energy mix, 

etc held constant, as long-term per capita GDP increases, long-term per capita CO2 

emissions increase until they reach approximately $22,204; beyond $22,204, per capita CO2 

emissions decrease. According to the MG model of the group of countries with nuclear 

power plants, electricity consumption has a statistically significant and positive effect on 

CO2 emissions in the long run and short run. Nuclear energy generation has a significant 

effect on reducing CO2 emissions in the long run. This implies that when nuclear energy 

generation increases by 1% to replace fossil fuel generation, there is a long-run reduction 

of 0.105% in CO2 emissions. Renewable energy generation also significantly reduces CO2 

emissions in the long run. Table 8 shows that a 1% increase in renewable energy generation 

as a substitute for fossil fuel generation results in a substantial and lasting reduction of 

CO2 emissions by 0.303%, which is almost three times of nuclear generation case. 
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 Group of countries with nuclear power plants Group of countries without nuclear power plants (1) Group of countries without nuclear power plants (2) 

 PMG MG PMG MG PMG MG 

 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

Long-run    

ln GDP -0.059 0.964 14.632* 0.052 -3.381* 0.067 17.975 0.303 0.110 0.414 0.088 0.782 

(ln GDP)2 -0.003 0.957 -0.731** 0.045 0.204** 0.045 -0.952 0.312 - -   

ln EC 0.923*** 0.000 0.952*** 0.000 0.742*** 0.000 0.757 0.108 0.587*** 0.000 1.074*** 0.001 

ln RE  -0.082*** 0.002 -0.303* 0.084 0.003 0.983 -0.185 0.448 -0.146** 0.022 -0.462*** 0.001 

ln NE -0.019*** 0.003 -0.105*** 0.002 - - - - - -   

ln TO 0.003 0.954 0.134 0.571 0.361*** 0.006 0.178 0.309 0.631*** 0.003 -0.042 0.829 

ln POP -1.047*** 0.000 -1.670* 0.070 -1.310*** 0.000 -1.735 0.041 -0.641** 0.023 -1.738** 0.047 

Short-run    

ECT(− 1) -0.129*** 0.000 -0.388*** 0.000 -0.062 0.136 -0.410*** 0.000 -0.049 0.139 -0.370*** 0.000 

Δln GDP -2.331 0.458 -11.076*** 0.001 5.172* 0.050 2.339 0.315 0.784*** 0.000 0.588*** 0.000 

Δ(ln GDP)2 0.158 0.331 0.580*** 0.001 -0.221 0.107 -0.098 0.441 - -   

Δln EC 0.433*** 0.001 0.308*** 0.004 0.474*** 0.000 0.394*** 0.005 0.528*** 0.000 0.300*** 0.000 

Δln RE  -0.050 0.242 -0.017 0.727 -0.287*** 0.000 -0.279** 0.031 -0.316*** 0.000 -0.194*** 0.000 

Δln NE -0.019* 0.056 -0.001 0.909 - - - - - -   

Δln TO 0.059 0.383 -0.071 0.224 0.086 0.101 0.061 0.391 0.041 0.478 0.046 0.503 

Δln POP 1.301 0.147 2.150*** 0.006 0.378 0.618 2.900** 0.014 1.006 0.176 2.359*** 0.006 

Constant 1.818*** 0.000 -16.843 0.184 1.674 0.157 -1.855 0.863 0.004 0.908 7.077 0.106 

 Hausman chi2 = 45.02,   p-value=0.0000 Hausman chi2 = 77.76   p-value= 0.0000 Hausman chi2 = -9.14      p-value=n.a. 

 No. of obs. = 612 No. of obs. = 510 No. of obs. = 510 

Table  8 Results of ARDL ECM  (lag = 1) 
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Next is the analysis results of the group of countries without nuclear power plants in the 

column ‘Group of countries without nuclear power plants (1)’ in table 8. Hausman test 

result supports MG estimation. The EKC does not hold as the coefficients of both ln GDP 

and (ln GDP)2 are not statistically significant.  

Hence, the ARDL model omitting (ln GDP)2 is conducted to the group of countries without 

nuclear power plants and the results are shown in the column ‘Group of countries without 

nuclear power plants (2)’ in Table 8. The results of the Hausman test do not clearly indicate 

whether PMG or MG estimation is more appropriate. Therefore, the analysis focuses on 

the MG estimation. Based on the MG estimation in the column 'Group of countries without 

nuclear power plants (2),' GDP growth leads to an increase in CO2 emissions, but this effect 

is not statistically significant. Electricity consumption significantly increases CO2 emissions, 

while renewable energy generation significantly reduces CO2 emissions. Notably, the 

reduction effect of RE is greater than that observed in the group of countries with nuclear 

power plants.  

These results imply that countries operating nuclear power plants are more likely to 

observe the EKC hypothesis due to unique dynamics associated with nuclear energy. 

Nuclear power, as a low-carbon energy source, significantly reduces CO₂ emissions, 

allowing countries to decouple economic growth from rising emissions (Sharma et al., 2024; 
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IEA 2019; Lee et al., 2017). Additionally, nuclear-powered nations often invest in advanced 

infrastructure and adopt stringent environmental and safety regulations, enabling better 

emissions management as income levels increase. This aligns with the EKC hypothesis, 

where emissions decline after reaching a certain level of economic development. 

In contrast, countries without nuclear power tend to rely more heavily on fossil fuels, which 

leads to increasing emissions with economic growth (IEA, 2023; NBER, 2017). These nations 

may lack robust environmental policies and the infrastructure needed for efficient 

emissions reductions, making it difficult to achieve the inverted-U pattern of the EKC. For 

countries choosing to expand renewable energy instead of nuclear power, challenges such 

as the intermittency of renewable sources like wind and solar, high transition costs from 

fossil fuel-based infrastructure, and insufficient regulatory frameworks may also hinder the 

emergence of the EKC. Renewable energy often requires supplementary fossil fuel 

generation for stability, potentially sustaining emissions during economic growth phases. 

However, with sustained investments in renewable energy and strong environmental 

policies, these nations may still achieve an EKC-like pattern over the long term. 

In both groups of countries, trade openness does not have a significant effect on CO2 

emissions, while population has a statistically significant negative impact on CO2 emissions 

in the long run. Population growth may reduce per capita CO₂ emissions due to several 
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factors (Swedish Research Council; Casey and Calor, 2016). Urbanization economies of scale 

improve infrastructure efficiency, enabling centralized energy use and better public 

transport. Technological advancements driven by higher demand foster renewable energy 

and efficiency investments. Economic shifts toward less carbon-intensive service sectors 

lower emissions. Additionally, policy changes and growing environmental awareness in 

larger populations promote sustainable practices and stricter regulations. These combined 

factors help explain the observed decline in per capita emissions with population increases. 

To verify the robustness of the ARDL model’s results, the same model is applied to sub-

sample groups as shown in Table 9. Group 1 uses the 1977–2021 data as a sample for 8 

out of 12 nuclear-operating countries, excluding 4 countries (i.e., Germany, Netherlands, 

Mexico, and Japan) where the share of nuclear power generation is less than 5%, and also 

excluding years when nuclear power generation was not in operation in these 8 countries. 

Group 2 uses the 1977–2021 data as a sample for 10 non-nuclear countries. 

Focusing on long-run relationships, in Group 1, the EKC hypothesis still holds, and ln 𝐸𝐶, 

ln 𝑅𝐸, and ln 𝑁𝐸 exhibit similar effects on CO2 emissions as observed in the previous 12 

country group of nuclear-operating countries, except that the effect of ln 𝑁𝐸 is greater 

than that of ln 𝑅𝐸.  
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 Group 1 Group 2 (1) Group 2 (2) 

 PMG MG PMG MG PMG MG 

 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

Long-run       

ln GDP 5.976*** 0.000 6.962 0.276 -3.373** 0.015 4.844 0.639 0.580*** 0.000 0.007 0.983 

(ln GDP)2 -0.282*** 0.001 -0.342 0.264 0.192** 0.014 -0.276 0.600     

ln EC 0.662*** 0.000 1.219*** 0.000 0.908*** 0.000 0.643* 0.075 0.733*** 0.000 1.278* 0.054 

ln RE  -0.043*** 0.003 -0.631 0.068 -0.046 0.628 -0.255 0.209 -1.113*** 0.000 -0.443** 0.013 

ln NE -0.324*** 0.000 -0.284** 0.010         

ln TO 0.137 0.322 0.163 0.195 0.389*** 0.000 -0.005 0.976 0.041 0.583 -0.339 0.512 

ln POP -3.084*** 0.000 -2.185*** 0.000 -1.142*** 0.000 -1.370 0.124 -0.791*** 0.000 -3.490 0.129 

Short-run       

ECT(− 1) -0.195** 0.029 -0.499*** 0.000 -0.091 0.124 -0.448*** 0.000 -0.120* 0.083 -0.406*** 0.000 

Δln GDP -14.916*** 0.000 -16.221*** 0.000 6.147*** 0.001 3.309 0.131 0.689*** 0.000 0.509*** 0.001 

Δ(ln GDP)2 0.742*** 0.000 0.808*** 0.000 -0.271*** 0.003 -0.149 0.208     

Δln EC 0.630*** 0.002 0.260** 0.046 0.466*** 0.000 0.378*** 0.009 0.474*** 0.000 0.357*** 0.000 

Δln RE  -0.109 0.296 0.074 0.445 -0.295*** 0.000 -0.252** 0.040 -0.233*** 0.001 -0.231*** 0.005 

Δln NE -0.123** 0.038 -0.048* 0.072         

Δln TO 0.061 0.301 -0.001 0.993 0.109* 0.073 0.105 0.112 0.116** 0.010 0.093* 0.080 

Δln POP 1.190 0.317 3.863** 0.024 0.771 0.358 4.553*** 0.008 0.766 0.167 3.126** 0.011 

Constant 3.835** 0.023 -0.871 0.954 2.242 0.140 7.902 0.648 1.294* 0.096 7.513* 0.088 

 Hausman chi2 = 4.20,   p-value=0.757 Hausman chi2 = 53.10   p-value= 0.0000 Hausman chi2 = 262.52   p-value= 0.0000 

 No. of obs. = 360 No. of obs. = 450 No. of obs. = 450 

Table  9 Results of ARDL ECM for sub-sample groups (1 lag)     
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In Group 2, the Hausman test results support MG over PMG. The MG results for Group 2 

indicate that the EKC hypothesis does not hold, which is consistent with the results of the 

previous 10 country group of non-nuclear countries. 

 

5 Conclusion and Policy implications 

 

In this paper, I examined the validity of the EKC hypothesis and the impact of the energy 

mix on CO2 emissions in two groups in OECD members: countries with nuclear power 

plants and those without. 

Based on ARDL ECM results, the group with nuclear power plants supports the validity of 

the EKC hypothesis, while no evidence of EKC validity was found in the group without 

nuclear power plants.  

In the group with nuclear power plants, the reduction rate of CO2 emissions from 

renewable energy generation is greater than that from nuclear energy generation. When 

comparing the impact of renewable energy generation on CO2 emissions reduction 

between the two groups, the group without nuclear power plants shows a greater 

reduction effect. Trade openness does not significantly affect CO2 emissions in either group, 

but population significantly reduces CO2 emissions. 

The analysis yields the following policy implications: First, in countries with nuclear power 
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plants, economic growth can contribute to reducing CO2 emissions once it surpasses a 

certain turning point, as indicated by the EKC. However, in countries without nuclear power 

plants, economic growth does not necessarily lead to reduced CO2 emissions, suggesting 

that these countries will require additional policy measures to curb emissions as their 

economies grow. Substituting fossil fuel generation with renewable energy generation has 

a greater effect on reducing CO2 emissions than substituting with nuclear energy 

generation. Additionally, the substitution of fossil fuel generation with renewable energy 

generation has a greater impact on CO2 emission reduction in countries without nuclear 

power plants compared to those with nuclear power plants. 

In conclusion, countries without nuclear power plants may have an advantage in reducing 

CO2 emissions through the substitution of fossil fuel with renewable energy. However, they 

are at a disadvantage because economic growth does not have a positive impact on 

reducing emissions, unlike in countries with nuclear power plants. 

This research has the following limitations: First, there is cross-sectional dependence in the 

panel data, and the CS-ARDL method would provide a more accurate estimation. However, 

due to the large number of variables in this model and the inability to account for cross-

sectional dependence, the CS-ARDL method was not used in this study. Among nuclear-

operating countries, some are formulating and implementing medium- to long-term 
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phase-out plans for nuclear and fossil fuel power generation. Analyzing how these plans 

influence the EKC pattern remains a task for future research. 
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