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ABSTRACT
The labor market is a complex ecosystem comprising diverse, in-
terconnected entities, such as industries, occupations, skills, and
firms. Due to the lack of a systematic method to map these hetero-
geneous entities together, each entity has been analyzed in isolation
or only through pairwise relationships, inhibiting comprehensive
understanding of the whole ecosystem. Here, we introduce Labor
Space, a vector-space embedding of heterogeneous labor market
entities, derived through applying a large language model with
fine-tuning. Labor Space exposes the complex relational fabric of
various labor market constituents, facilitating coherent integrative
analysis of industries, occupations, skills, and firms, while retaining
type-specific clustering. We demonstrate its unprecedented ana-
lytical capacities, including positioning heterogeneous entities on
an economic axes, such as ‘Manufacturing–Healthcare and Social
Assistance’. Furthermore, by allowing vector arithmetic of these
entities, Labor Space enables the exploration of complex inter-unit
relations, and subsequently the estimation of the ramifications of
economic shocks on individual units and their ripple effect across
the labor market. We posit that Labor Space provides policymakers
and business leaders with a comprehensive unifying framework for
labor market analysis and simulation, fostering more nuanced and
effective strategic decision-making.

CCS CONCEPTS
• Applied computing → Economics; • Computing method-
ologies → Information extraction; • Information systems →
Environment-specific retrieval.
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1 INTRODUCTION
Understanding the labor market is essential to comprehend the
entire economy. A strong understanding of the labor market can
not only providemacroeconomic status, such as unemployment rate
and household income, but also reveal where our entire economic
system moves toward by grasping the complex inter-relationship
between various economic units in the economy.

Human capital, encompassing the diverse skills and jobs pop-
ulating the labor market, is the basis upon which industries and
firms are built [10, 40, 42, 54]. It represents the nuanced interplay
of individual capabilities and the broader economic forces. For
instance, the rise of a new technological skill could dictate the tra-
jectory of entire industries, and subsequently the businesses within
them [1, 3, 27]. Hence, understanding this connection between hu-
man capital and larger economic entities is crucial, not only for
academic comprehension but also for pragmatic decision-making
in industries and policymaking.

Yet, despite its significance, a holistic framework that encom-
passes these interconnections has been absent [25]. Most existing
methods either focus only on a specific entity [10, 29, 31, 33] or
pairwise relationships [47, 48, 51], without considering the entire
structure where different types of entities are entangled. This gap
in analysis often results in oversimplified representations and con-
clusions, limiting the depth of insights that can be derived about
the labor market’s ecosystem.

Here, we present Labor Space, a unifying representation of the
heterogeneous entities in the labor market. By leveraging the ca-
pabilities of a large language model — Google’s BERT — with ad-
ditional fine-tuning with representative descriptions of the labor
market entities from various corpora, we derive an unifying rep-
resentation of the labor market’s constituents, including skills, oc-
cupations, industries, and firms. The landscape of Labor Space
provides a holistic framework, by exposing the relational fabric of
various labor market constituents. At the same time, it facilitates
the clustering of related industries, occupations, skills, and firms,
while retaining type-specific clustering.

By systematically mapping heterogeneous units onto sensible
semantic axes, such as ‘Manufacturing-–Healthcare and Social As-
sistance’, Labor Space offers unprecedented analytical capacities.
Furthermore, through intricate vector arithmetic of these entities,
Labor Space enables the exploration of complex inter-unit relations,
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Table 1: Description Data and Source

Entity Data Source Number of Entities Example

Industry NAICS 308
Metal ore mining comprises establishments primarily engaged in developing mine sites
or mining metallic minerals, and establishments primarily engaged in ore dressing
and beneficiating (i.e., preparing) operations, such as crushing, grinding, washing,
drying, sintering, concentrating, calcining, and leaching. ∼

Occupation O*NET 1,016
Data scientists develop and implement a set of techniques or analytics applications to
transform raw data into meaningful information using data-oriented programming
languages and visualization software.

Skill ESCO 307 Counseling assists others to gain access to social, legal or other services and benefits,
including making referrals to other professionals and organizations.

Firm Crunchbase 489
Meta is a social technology company that enables people to connect, find communities,
and grow businesses. Previously known as Facebook, Mark Zuckerberg announced the
company rebrand to Meta on October 28, 2021 at the company’s annual Connect
Conference. ∼

thereby allowing estimation of the impact of economic shocks or
adoption of new technology, such as artificial intelligence, on indi-
vidual entities and their ripple effect across the labor market.

Our overarching goal with Labor Space is to bridge the existing
analytical gap, connecting the dots between individual skills and
jobs and the vast expanse of industries and firms. This work under-
scores the significance of viewing the labor market not as isolated
silos but as an interconnected web, where shifts in human capital
can ripple across the entire economic ecosystem. We expect that
our Labor Space empowers stakeholders, from business leaders to
policymakers, with a holistic view of the labor market, enabling
more informed, strategic, and effective decisions.

2 RELATEDWORKS
2.1 Analysis of the labor market and its entities
The labor market, a multifaceted and intricate ecosystem, is wo-
ven together by interconnection between entities like industries,
occupations, skills, and firms. Historically, research into this do-
main has predominantly fallen under two analytical frameworks,
which have evolved as established paradigms through cumulative
research: (1) understanding the influence of one entity over another,
and (2) elucidating the structure of one entity in juxtaposition with
another.

The first paradigm largely revolves around the human capital
perspective. Human capital in economic theory, denotes the qual-
itative attributes of labor, extends traditional production factors,
such as land, labor, and tangible capital, incorporating a worker’s
skills and expertise. This perspective delves deep into the impact
of investments made in human resources, scaling from individ-
ual workers to overarching industries and firms [11, 41]. Existing
human capital studies have ventured into areas like knowledge
spillovers [5, 52, 53, 55], in addition to the private and societal
returns linked to industry- and occupation-specific human capi-
tal [44, 48, 51].

Network analysis in economics, meanwhile, has illuminated intri-
cate relationships between different entities. For instance, the skill
network, inferred from the co-occurrence of skills among job seek-
ers and providers, suggests that individuals with a diverse skill set
command higher wages; more remarkably, those synergizing their
varied skills earn top-tier wages [7]. Further exploring this, a skill
network pinpoints the dichotomy between physical and cognitive
skills based on job requirements [4]. Additionally, the ties binding

educational paths, as determined by collaboration within organi-
zations, have underscored the wage benefits of working alongside
those with complementary qualifications [46]. Beyond skills, the
labor market research also delves into the broader associations be-
tween firms and industries, helping demystify the macro-structures
of the global economy [45, 49].

However, despite the valuable insights these studies offer, there
remains an important oversight in their approach. Much of the
existing research tends to examine entities in isolation or restricts
itself to binary relationships, whose narrowed focus hinders a holis-
tic grasp of the labor market’s nuances. A significant limitation
has been the absence of a cohesive methodology capable of si-
multaneously mapping the varied units of the labor market. This
gap in research underscores the urgent need for a more integrated
analytical framework that bridges the existing divides.

2.2 Application of language models in social
science

Languagemodels, such asword embedding, transformhigh-dimensional
or unstructured text data into lower-dimensional representations [38].
In these models, embedding vectors are derived from the relation-
ships of words within sentences, and each vector captures the
semantic essence or underlying meaning of its corresponding word.
With the introduction of word or document embedding models into
the social sciences [39], a new avenue has emerged for analyzing
and understanding cultural, social, and historical trends [36].

Through the use of word embeddings in social science, deeper in-
sights into historical, cultural nuances, and societal biases have been
achieved. An exploration of the vast corpus of English-language
Google Books revealed the evolution and persistence of social group
representations over two centuries, using word embeddings from
850 billion words [19].

A deep dive into semantic biases, trained on standard web text,
showed that our historical biases, ranging from the benign to
the problematic, are deeply embedded in everyday human lan-
guage [17]. This finding aligns with studies that highlighted the
changing dynamics of stereotypes, especially in terms of gender
and ethnicity in the U.S. during the 20th and 21st centuries. Notably,
these models identified significant societal events, such as the 1960s
women’s movement and immigration trends [28].

Beyond social stereotypes, the flexibility of word embeddings
has been showcased in other domains. Insights into socio-economic
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Figure 1: Constructing the Labor Space. (A) Sample entity description from the 2,120 available. (B) Google’s BERT, fine-tuned with descriptions
from NAICS, O*NET, ESCO, and Crunchbase, predicts the [Mask] token using its context, learning labor market nuances. (C) training inter-
relations between Labor Space entities using paired datasets, asmagnified in the right-side figure. (D) Both contextual and relational information
is captured in BERT’s final hidden layer, from which we extract word vectors. (E) A full description vector is represented by averaging its word
vectors. (F) Each vector is then labeled with its corresponding title.

classes and their transformations over a century were derived us-
ing word embeddings, linking cultural theories with semantic re-
lations in high-dimensional spaces [32]. Using embeddings from
Google News articles, the persistent gender biases in occupational
terms evident even in modern media were unveiled [15]. In the
realm of management science, the importance of language models
in business analytics was emphasized. A ‘culture dictionary’ de-
veloped using a word embedding model trained on earnings call
transcripts connected corporate culture with tangible business out-
comes, expanding our perspective on corporate innovation beyond
just factors like R&D spending [35].

In economics, language models serve to develop new economic
measurements in the labor market. For instance, language mod-
els are utilized to match patent abstracts with occupational tasks,
differentiating between labor-augmenting and labor-automating
innovations [8], and to explore the connection between university
syllabi and occupational tasks, to shed light on the specific skills im-
parted in higher education and their relevance to job opportunities
and earnings [20]. Moreover, a recent study combines university
syllabi with cutting-edge research articles and patent abstracts to
gauge the gap between education and frontier knowledge [14].

However, while these aforementioned studies have been mon-
umental in their revelations and have extensively advanced our
understanding of social dynamics using word embeddings, they
predominantly emphasize individual layers of units and their asso-
ciated relationships. In this study, we aims to offer a more intercon-
nected view, integrating various elements of the labor market into
a cohesive space. By navigating the relationships between diverse
entities, we propose a novel framework to utilize word embeddings
in social science research, especially in the context of the labor
market.

3 DATA AND METHODS
3.1 Entity descriptions
3.1.1 NAICS. We use the North American Industry Classification
System (NAICS) to embed industry entities into the Labor Space,
as the examples in Table 1. NAICS is the standard classification
system used by federal statistical agencies in the United States to
classify business establishments. It maps business activities onto a
hierarchy of industry classifications ranging from 2-digit to 6-digit,
depending on the scope and range of the activity. In this study,
we focus on the 4-digit industry classification, which includes 308
distinct titles and descriptions.

3.1.2 O*NET. The occupation information is derived from the
Occupational Information Network (O*NET). The O*NET data com-
prehensively describes various professions in the contemporary
American workplace and is widely used in academic research. Ta-
ble 1 provides an example of an occupation description for ‘data
scientist’. Our analysis focuses on 1,016 distinct occupation titles
and descriptions from the O*NET 27.3 database.

3.1.3 ESCO. The skill components are derived from European
Skills, Competences, Qualifications, and Occupations (ESCO), a
multilingual classification system for the European workforce. It
offers roughly 15,000 skill units and a hierarchy system ranging
from level 0 to level 3. We selected a level 3 skill hierarchy encom-
passing 307 distinct skill names and descriptions for our analysis.
An example description is presented in Table 1.

3.1.4 Crunchbase. The firm entities are sourced from Crunch-
base.com, a platform that provides information on companies, in-
vestors, and industry trends. Here, as a representative sample of
firms, we selected the firms listed as the S&P 500 companies in the
U.S. stock market and extracted their descriptions. As an example,
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the description of a social media company ‘Meta’ is presented in
Table 1.

3.2 BERT model
To quantify the conceptual similarities among heterogeneous types
of entities in the labor market, we use the widely-adopted pre-
trained word embedding model, Bidirectional Encoder Representa-
tions from Transformers (BERT) [22]. Existing ttudies have shown
that embedding models are capable of representing rich seman-
tic relationships between words through spatial relationships in a
vector space [6, 23, 38, 39, 43].

BERT, as an encoder model, is the de-facto standard for contex-
tual representation model. It has been widely employed, especially
with fine-tuning, to achieve breakthrough performance in various
natural language processing tasks [22].

3.3 Fine-tuning for context learning
While the base BERT model is considered reliable for general con-
text, existing studies have reported the relatively lower performance
of the model capturing the micro-relationships of entities focusing
on a specific context, such as scientific or medical text [12, 18, 34].
Hence, we fine-tune the original BERTmodel in twoways to capture
the latent structure of the labor market. First, we use HuggingFace’s
“fill mask” pipeline for context learning. Here, the context learning
aims to adjust the pre-trained model to the context of the labor
market, through additional training with a domain-specific corpus
for each entity. As a domain-specific corpus, we concatenate (1) 308
NAICS 4-digit descriptions, (2) O*NET’s descriptions for 36 skills,
25 knowledge domains, 46 abilities, 1,016 occupations, (3) ESCO’s
descriptions for 15,000 skills, 3,000 occupations, and (4) 489 Crunch-
base S&P 500 firm descriptions, excluding their labels. We set the
maximum token length to 512 and configured the hyperparameters
for three epochs, using a batch size of 8 and a learning rate of 2e-5
on an RTX 3080 Ti GPU.

3.4 Fine-tuning for relation learning
After the initial fine-tuning to embed the context of the labor mar-
ket, we conducted an additional fine-tuning process to incorporate
inter-entity relatedness. Inspired by the recent work by Cohan et
al. [21], which builds interconnections between scientific papers us-
ing citation networks, we constructed the following three datasets
to train the connections between different types of labor market
entities: (1) classification triplet examples, (2) industry-occupation
pairs, and (3) occupation-skill pairs.

First, the classification triplet consists of three items — an anchor,
a positive sample, and a negative sample. The anchor is the target
item that our model aims to learn the relational representation
for, while the positive and negative examples are items related
and unrelated to the target, respectively. We randomly assign the
anchor from 308 industries, 1,016 occupations, 307 skills, and 489
firm descriptions. Positive and negative items are then assigned by
leveraging the classification hierarchy system. An entity description
is assigned to the positive sample if they share the same parent in
their classification system, and to the negative sample if they do
not. For each type of entity, we use the following corresponding
classification systems: 2-digit NAICS classes for industries, 2-digit

SOC’s classes for occupations, second-level ESCO classes for skills,
and 2-digit General Industry Classification System (GICS) classes for
firms. We use triplet loss as the loss function in triplet-based models.
It encourages the anchor embedding to be closer to the positive and
farther from the negative, improving the model’s discriminative
ability in the embedding space (Fig. 1C(a)).

Second, we employ the Occupational Employment and Wage
Statistics (OEWS) to build connections between industries and
occupations. The OEWS provides the number of workers across
occupations within each industry. By calculating the proportion of
employment for each occupation in an industry, we identify which
occupations are most strongly associated with a given industry.
With this relational data, we define the relatedness between indus-
tries and occupations using a cosine similarity loss function for
training our model. This method encourages the model to produce
representations that are more similar for industries with a higher
proportion of shared occupations (Fig. 1C(b)).

Lastly, to train relations between occupations and skills, we
utilize the ESCO dataset, which labels skills as essential, optional, or
irrelevant for each occupation. From this information, we construct
anchor and positive sample pairs, setting occupation descriptions as
anchor samples and skill descriptions as positive samples when the
relationship between an occupation and a skill is either essential or
optional. We employ the multiple-negatives-ranking loss function
to establish the connection between occupations and skills. This
loss function uses occupation and skill relational data to adjust the
weights so that they are proximal in the vector space (Fig. 1C(c)).

3.5 Obtaining vectors for labor market entities
To obtain vectors for labor market entities, we first process the
textual descriptions of the entities, using the BERT’s tokenizer
function. The BERT tokenizer, known as Wordpiece, encodes raw
text data into token sequences and maps these tokens to their
respective token IDs. This conversion turns the description into
token sequences, which are the smallest semantic units BERT can
interpret. BERT thenmaps these token sequences to a matrix, where
each row comprises 768-dimensional vectors representing each
token ID (Fig. 1D). To derive a singular representation of the input
description, we compute a linear combination of individual word
vectors. This is achieved by summing the embeddings of all the
words in the sequence and dividing by the word count (Fig. 1E),
thus capturing the overall semantic essence of the description. Each
description embedding is labeled with its corresponding title for
identification.

4 LANDSCAPE OF LABOR SPACE
Labor Space provides an embedding environment in which indus-
tries, occupations, skills, and firms are plotted in a unifying vector
space. The current version includes 308 industries, 1,016 occupa-
tions, 307 skills, and 489 firms. However, more types and entities can
be integrated when their representative description texts become
available. The proximity of entity vectors in our Labor Space, mea-
sured via cosine similarity, aptly mirrors their conceptual similarity
in the labor market.

Fig. 2A provides a visual representation of the Labor Space in
two dimensions by UMAP algorithm [37], where colors distinguish
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Figure 2: Visualizing Labor Space (A) Labor entities, originally 768-dimensional, are mapped to a 2D space using UMAP. (A1)
Highlighted values in the Tradable–Nontradable dimension show close ties with real estate. (A2, A3) Construction-related
entities cluster due to the industry’s blend of manufacturing and tradability. (A4) Emphasized values on the Manufacturing–
Healthcare and Social Assistance dimension show deep ties to healthcare. (B) Map colored by cosine similarity between
V(Tradable → Nontradable) and labor vectors; black rectangles indicate locations from A1, A2, A3. (C) Distribution of cosine
similarity between V(Manufacturing→ Healthcare and Social Assistance) and labor vectors; the black rectangle pinpoints the
location in A4.

entity types. Labor market entities align with their conceptual re-
semblances in the labor market. S&P 500 firms predominantly clus-
ter around specific industries, while occupations and skills bridge
the spatial gap, reflecting the diverse skill sets and roles required
by large corporations, especially those in the S&P 500. Moreover,
diverse labor market entities cluster spatially based on concep-
tual similarities. For example, entities associated with real estate
(Fig. 2A1), construction (Fig. 2A2 and Fig. 2A3), and healthcare
(Fig. 2A4) are grouped closely, while there exists a spatial separa-
tion based on specific tasks, such as the one between the entities
for exterior and interior construction (Fig. 2A2 and Fig. 2A3, re-
spectively). This organized clustering in the Labor Space empowers
policymakers and business owners to pinpoint and prioritize the
pivotal skills and occupations relevant to a particular industry or
company.

5 MAPPING HETEROGENEOUS UNITS ON A
CONCEPTUAL AXIS

Using vector arithmetic among its entities, Labor Space offers the
capability to map various entities across multiple economic di-
mensions. Fig. 2B and C depict the relative scores of labor market
entities on two distinct axes: (1) the Tradable–Nontradable axis,
where nontradable industries encompass local services like restau-
rants, grocery stores, and salons, and tradable industries comprise
businesses that produce exportable or importable products [30];

and (2) the Manufacturing–Healthcare and Social Assistance axis,
which exposes the relative similarities between manufacturing and
healthcare & service industries.

To structure an axis, we first identify a representative entity for
each pole. Then, we determine a conceptual vector transitioning
from one pole to the other through vector subtraction [50]. Pro-
jecting labor market entities onto this axis vector lets us measure
the shared association between the two vectors in a continuous
representation [32]. This method facilitates visualizing and quan-
tifying how labor entities are positioned along the axis, such as
the Manufacturing–Healthcare and Social Assistance dimension,
within Labor Space.

Fig. 2B illustrates the Tradable–Nontradable dimension superim-
posed on Labor Space. As the tradable and nontradable categories
are not explicitly distinguished among our entities, we introduce
an auxiliary process to compute the industry centroids (see Appen-
dix A.1). Entities aligned with the nontradable sector, such as real
estate (Fig. 2A1), gravitate towards the top regions of the Labor
Space. Conversely, tradable sectors like manufacturing and energy
predominantly settle at the bottom.

In a similar manner, Fig. 2C displays the distribution of projection
values on the Manufacturing–Healthcare and Social Assistance
axis throughout Labor Space. Entities linked to manufacturing are
mostly situated on the left, whereas those tied to healthcare lean
towards the right in the space. A clear transition is noticeable from
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Figure 3: Spectrum Plot of Labor Market Units. All labor entities are projected onto the V(Manufacturing→ Healthcare and
Social Assistance) axis. (A) Vertical lines within the industry spectrum box show industry embedding projections. Representative
industry titles are annotated, using NAICS 2-digit classification for sub-spectrum plotting. (B-D) The same projection method
applies for firms (using General Industry Classification System), occupations (using Standard Occupation Classification), and
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manufacturing to Healthcare and Social Assistance as we move
from left to right.

These projection maps, centered on economic axes, grant a com-
prehensive perspective of the labor market structure, reinforcing
that our embedding space authentically captures labor market dy-
namics. To further underscore this analytical effectiveness of La-
bor Space, Fig. 3 portrays the continuous spectrum produced by
the projection of labor market entities along the Manufacturing–
Healthcare and Social Assistance dimension. Representative entity
titles are annotated on this spectrum to spotlight their positions. To
validate entity alignment along this axis, we present sub-spectrum
plots for each classification system. For industries and occupations,

only the top 5 and bottom 5 sub-spectrum plots, sorted by mean
projection value for each classification, are accentuated.

Across all labor market entity categories, projecting entities onto
the conceptual axis consistently yields reliable outcomes. Firms
linked to materials, energy, and industrial utilities (e.g., Steel Dy-
namics and Caterpillar) are proximate to the manufacturing pole,
while those offering services like healthcare, real estate, and fi-
nance (e.g., CVS Health and Paypal) are nearer to the Healthcare
and Social Assistance pole (Fig. 3B). Likewise, skills and occupa-
tions tied to manufacturing lean to the left (e.g., Machinists and
Welders), whereas those connected to services shift to the right (e.g.,
Midwives and Nannies) (Fig. 3C and D). This result underscores
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Figure 4: Vector analogy of firm and industry entities.

the robustness of Labor Space in mapping concepts across diverse
economic categories.

6 VECTOR ARITHMETIC FOR ECONOMIC
ANALOGY

Is it possible to conduct vector arithmetic across types of economic
entities? For instance, consider the computation V(Firm A) - V(Skill
X) + V(Skill Y). Can such an equation estimate the impact of a new
entity’s emergence or the absence of an existing entity from one
category on an entity in another category?

Beyond an empirical validation of the vector distance in Labor
Space, presented in Appendix A.2, vector analogies uncover latent
connections between heterogeneous entities in Labor Space. Fig. 4
presents relationships drawn between firms and industries. In this
visualization, the formula V(Firm A) - V(Industry B) + V(Industry
C) ∼ V(Firm D) articulates analogical relationships between firms
and their corresponding industries. For instance, leading firms
in the beverage and restaurant sectors are analogously seen as
Nike in the footwear realm, as illustrated in Fig. 4A, B, and C.
Another example from Fig. 4D posits that Amazon, if divested
of its web search and IT components but equipped with physi-
cal stores, would approximate Walmart within the S&P 500 — a
deduction made from the vector equation V(‘Amazon’) - V(‘Web
Search Portals, Libraries, Archives, and Other Information Ser-
vices’) + V(‘Department Stores’) ∼ V(‘Walmart’). Similarly, Tesla,
when stripped of its electrical base but supplied with gasoline el-
ements, aligns closely with Ford, as per the equation V(‘Tesla’) -
V(‘Other Electrical Equipment and Component Manufacturing’) +
V(‘Gasoline Stations’) ∼ V(‘Ford’), reinforcing our intuitive under-
standing (see Fig. 4E).

Such vector operations encapsulate a myriad of interactions
among labor market entities in reality through vector arithmetics
across heterogeneous labor market entities. For instance, the equa-
tion ‘occupation A + industry B + skill C ∼ firm D’, arguably the
most intricate analogy in the labor market, exemplifies how vector
analogies can be pragmatically harnessed for career recommen-
dations to job aspirants. In our analysis, V(‘Mathematicians’) +
V(‘Other Investment Pools and Funds’) + V(‘Providing Financial
Advice’) suggests Principal Financial Group, JP Morgan & Chase,
and Goldman Sachs, which have been considered as the best firms
for mathematicians eager to serve in investment funds, leverag-
ing their financial abilities. Additional examples are presented in
Appendix A.3.

7 ESTIMATING THE IMPACT OF AI
The labor market is currently experiencing a significant shift due
to the widespread integration of artificial intelligence (AI) across
numerous economic sectors. AI, broadly defined as technology that
discerns patterns from data, has reignited apprehensions regarding
technological unemployment [9, 13, 25]. Recent concerns about
AI’s influence on the labor market have spurred efforts to gauge
occupation-level AI exposure [2, 16, 24, 26], aiming to guide both
academic research and policy-making towards facilitating workers’
adaptation to the evolving job landscape. Then, does our Labor
Space offer a way to gauge AI’s footprint on the labor market,
spanning across types?

A standout feature of Labor Space is its inherent scalability. Being
a vector space shaped by a language model, it can seamlessly admit
any new entities, when there are sufficient descriptive texts at
hand. To discover whether Labor Space can gauge the labor market
reflecting emerging technologies, specifically AI, we compare our
results with a prior study quantifying AI industry exposure (AIIE)
and AI occupation exposure (AIOE) [24]. Using the top ten AI
application definitions from [24] (see Appendix A.4), we derive
estimates for AI’s imprint on industries and occupations and then
correlate these with the aforementioned AIIE and AIOE scores.
We collect descriptions of the top ten AI applications, obtain their
average embedding vectors, and compute its cosine similarity with
both industry and occupation vectors.

Fig. 5A and B illustrate the correlation between our derived co-
sine similarity scores for AI applications and the established AIIE
and AIOE metrics. The X-axis shows exposure scores from [24],
assessing each entity’s vulnerability to specific AI applications,
while the Y-axis presents the cosine similarity between AI applica-
tion vectors and corresponding Labor Space entries. These metrics
exhibit a robust correlation, affirmed by a Pearson’s correlation
coefficient of 0.51 (p-value < 0.001), suggesting that such cosine
similarity measures with novel technology vectors can effectively
gauge AI exposure across labor market facets.

Delving deeper, can refining our definitions yield even sharper
insights within Labor Space? Leveraging AIIE and AIOE metrics
focused on language modeling applications from [24], we isolate
descriptions pertinent to language modeling, derive corresponding
vectors, and recalibrate our cosine similarity analyses. The correla-
tion between language modeling exposure scores (X-axis) and our
computed cosine similarities (Y-axis) notably strengthens for occu-
pational exposure (rising from 0.47 to 0.59) upon this specification,
even as industrial exposure maintains its robust correlation of 0.51
(Fig. 5C and D).

Labor Space, given its methodology, tends to underscore height-
ened AI exposure risks for entities whose tasks align with capabili-
ties of contemporary AI models. For instance, entities like ‘Software
Publisher’ and ‘Foreign Language Teachers’ are perceived as more
vulnerable, while financial domains register diminished AI expo-
sure, appeared in language modeling AI exposure visualizations
as well. While determining the absolute accuracy of these estima-
tions remains a future endeavor, analyzing AI exposure through
the prism of Labor Space not only underscores its versatility but
also furnishes a virtual arena for stakeholders — policymakers,
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Figure 5: Correlation between the industry-wise (A and C) and occupation-wise (B and D) exposures to AI (A and B) and
Language Models (C and D) by [24] (X-axis) and the cosine similarity of of AI and Language Model description vectors and
industrial and occupational embedding vectors (Y-axis).

researchers, or business magnates — to conceptualize and simu-
late potential shifts impacting diverse labor market entities. As
an exploratory application, we further apply the same approach
to measure the exposure of firms and skills to AI and Language
Models, which are shown in Appendix A.5

8 DISCUSSION
The intricate nature of labor markets, characterized by a vast array
of interwoven elements ranging from individual skills to expansive
industries, has historically posed challenges for comprehensive
analysis. Despite numerous studies delving deep into specific facets
like individual skills or industry trends, a holistic view connecting
micro-level human capital to overarching economic entities has
remained largely uncharted.

In this study, we introduce Labor Space, a pioneering representa-
tion that captures the multifaceted entities within the labor market.
Utilizing Google’s BERT, a state-of-the-art language model, com-
plemented with further refinement, we have succeeded in crafting
an unifying portrayal of the labor market’s key elements, encom-
passing skills, occupations, industries, and firms.

The potential applications of Labor Space are vast. For academic
researchers, it provides a comprehensive framework that could lead
to more nuanced hypotheses and research questions, considering
the interconnectedness of labor market entities. On the practical
side, policymakers can leverage this to understand the ripple effects
of economic or educational policies on various facets of the labor
market. Similarly, industry leaders can harness its insights to make

informed decisions about skill development, hiring, and industry
partnerships.

Still, there are limitations to consider. Firstly, our reliance on
Google’s BERT, while powerful, ties our results to the biases and
constraints of this model. Although BERT is trained on a vast corpus,
it may not capture recent developments in the labor market or
might reflect societal biases present in its training data. As the labor
market evolves, there’s a need for continuous fine-tuning to ensure
the relevancy and accuracy of Labor Space.

Another limitation lies in the granularity of data. While Labor
Space can cluster related entities, the quality of these clusters largely
depends on the input data. Incomplete or outdated data might
lead to less accurate representations. Simplifying this for broader
audiences, without losing the depth of information, is an area that
requires further exploration.

In addition, while Labor Space captures the interconnectedness
of various labor market entities, it may not account for external
socio-economic factors or global events that can drastically influ-
ence the labor market’s dynamics. Future iterations could benefit
from integrating external datasets or indicators to provide a more
holistic view.

In conclusion, Labor Space presents a groundbreaking approach
to understanding the labor market as an ecosystem. While it has
its limitations, the potential benefits it offers to both the academic
and practical realms are immense. As a future direction, refining
the methodology and addressing its constraints will be paramount
to ensure its continued relevance and efficacy.
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A APPENDIX
A.1 Tradability of industry
To make a tradable-nontradable dimension, we set industry cen-
troid with reference to tradability score [30]. Table 2 displays the
tradability score for each NAICS 2-digit classification. We desig-
nate industries with a score of 100 percent as either tradable or
nontradable industry poles.

Table 2: Tradability score

Percent of Industry Nontradable Tradable
Accommodation and food services 100 0
Administrative and waste services 89.8 10.2
Agriculture, forestry, fishing, and hunting 0 100
Arts, entertainment, recreation 90 10
Construction 100 0
Educational services 98.89 1.11
Finance and insurance 32.05 67.95
Government 90 10
Healthcare and social assistance 97.8 2.2
Information 34.1 65.9
Manufacturing 0 100
Mining 0 100
Other services 100 0
Professional Services 39.2 60.8
Real estate and rental and leasing 100 0
Retail trade 85.185 14.815
Transportation and warehousing 0 100
Utilities 40 60
Wholesale trade 100 0
Since the “Mining” industry does not align precisely with the current
NAICS 2-digit classification, we employ the “Mining, Quarrying, and
Oil and Gas Extraction” to encompass it.

A.2 Validation of vector distance using
k-nearest neighbors algorithm (k-NN)

We have conducted a comprehensive validation of our Labor Space
model using the k-nearest neighbors algorithm (k-NN) that adds
robustness to our framework. The k-NN algorithm is to predict the
upper hierarchy class (e.g., NAICS 2-digit-level title for industries,
SOC 2-digit-level title for occupations, ESCO skill hierarchy level
2 title for skills, and GICS 2-digit classification title for firms) for
each entity within Labor Space based on the classes of its nearest
neighbors.

Table 3: Prediction accuracy of the vector distance in Labor
Space

Accuracy
k = 3 k = 5 k = 7 k = 9

Industry 0.86 0.84 0.83 0.80
Occupation 0.78 0.74 0.72 0.72
Skill 0.80 0.77 0.74 0.73
Firm 0.85 0.82 0.80 0.77

The accuracy, ranging from 0.72 to 0.86, are particularly notewor-
thy, especially when considering the baseline for multi-class (for

instance, the NAICS system has twenty 2-digit classes) classifica-
tion problems with random selections. These high accuracy levels
suggest that the clustering of labor market entities within Labor
Space is not arbitrary but is instead based on meaningful semantic
relationships. Furthermore, the observation that accuracy decreases
as the value of k increases aligns with our expectations, as a larger
k implies a broader neighborhood and a potential inclusion of less
similar neighbors, which naturally leads to lower accuracy.

A.3 Additional examples for vector arithmetic

Table 4: Vector analogy of heterogeneous labor market units

Formula Top 3 entities
Occupation - Occupation ∼ Occupation 1. Data Architects
V(“Data Scientist”) - V(“Statistician”) 2. Database Administrators

3. Data Warehousing Specialists
Occupation - Occupation ∼ Skill 1. Monitoring financial and economic
V(“Teller”) - V(“Cashier”) resources and activities

2. Managing budgets or finance
3. Analysing financial and economic data

Occupation + Industry + Skill ∼ Firm 1. Principal Financial Group
V(“Mathematicians”) 2. JP Morgan Chase
+ V(“Other Investment Pools and Funds”) 3. Goldman Sachs
+ V(“Providing Financial Advice”)

A.4 The top 10 AI applications

Table 5: Top 10 AI application

AI application Definition
Abstract strategy The ability to play abstract games

involving sometimes complex strategy
and reasoning ability, such as chess,
go, or checkers, at a high level.

Image recognition The determination of what objects
are present in a still image.

Visual question The recognition of events, relationships,
answering and context from a still image.
Reading comprehension The ability to answer simple

reasoning questions based on
an understanding of text.

Language modeling The ability to model, predict,
or mimic human language.

Translation The translation of words or
text from one language into another.

Speech recognition The recognition of spoken language
into text.

Instrumental track The recognition of instrumental
recognition musical tracks.
Real-time video games The ability to play a variety of

real-time video games of increasing
complexity at a high level.

The Electronic Frontier Foundation (EFF), a respected digital
rights nonprofit, has a substantial presence in the academic and
research community and collects AI progress statistics from verified
sources, including academic literature, blogs, and websites. The EFF
selected the top 10 AI applications with recorded scientific progress
since 2010, as these are deemed to be experiencing rapid growth and
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have medium-term relevance. Table 5 gives the top 10 applications
list and brief definitions.

Table 6: Top 10 firms exposed to AI/LM

AI Language Modeling
1 NetApp Google
2 Take-Two Interactive Software Alphabet
3 Alphabet EPAM Systems
4 Match Group Cadence Design Systems
5 Netflix FactSet
6 Google Adobe
7 Microsoft Zebra Technologies
8 Electronic Arts Gartner
9 Warner Bros. Discovery NetApp
10 Adobe Celanese

A.5 AI exposure of firms and skills
This scalability across different types of entities is a unique feature
of Labor Space, enabling us to predict the economic impact of
various types for which crowdsourced or representative quantified
datasets may not exist. Here, the AI exposure scores of firms and

skills are measure by their cosine similarities with the conceptual
vectors for AI. Table 6 and Table 7 show top 10 firms and skills that
are highly exposed to AI and LM, respectively.

Table 7: Top 10 skills exposed to AI/LM

AI Language Modeling
1 Using more than one language Using more than one language
2 Translating and interpreting Translating and interpreting
3 Using foreign languages Using foreign languages
4 Technical or academic writing Using computer aided design

and drawing tools
5 Artistic and creative writing Using digital tools for collaboration,

content creation and problem-solving
6 Using digital tools for collaboration, Artistic and creative writing

content creation and problem-solving
7 Using computer aided design and Designing ICT systems or

and drawing tools applications
8 Writing and composing Technical or academic writing
9 Communication, collaboration Browsing, searching and

and creativity filtering digital data
10 Conducting gaming activities Accessing and analysing

digital data
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