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Abstract 

 Labor Space :  A High-Dimensional Representation of the Labor Market  

via Large Language Models 

Kim, Seongwoon 

 

The labor market is a complex ecosystem comprising multiple economic units such as 

skills, jobs, industries, and firms. Hence, a true understanding of the labor market requires a 

holistic perspective that considers the interrelationships between these entities. However, 

existing studies have often focused on single or bipartite units; therefore, they don’t capture 

the reciprocal effect of heterogeneous units of the labor market. Here, we introduce Labor 

Space, a high-dimensional space created by a large language model. Labor Space maps 

industry, firm, occupation, and skill to a unified embedding space representing the conceptual 

similarity of the labor market entities. Alignment of conceptual dimensions, such as the 

production-healthcare axis, reveals our numerical representation portrays the industrial 

structure of the labor market. Moreover, the calculation of the embedding vector catches the 

latent relationship of the labor market entities and their interactions with external factors, 

such as the impact of AI on the labor market. Labor Space offers a comprehensive and 

innovative approach to understanding the interconnectedness of entities within the labor 

market, providing a pragmatic tool for researchers, policymakers, and business leaders. 
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1. Introduction 

The labor market is a complex economic system where different economic units such as 

skills, jobs, firms, and industries are interconnected. For instance, the advancement in 

information technology influences industry, occupation, skill, and firm all together but 

separately. On the industry level, innovation in IT impacts the information industry, while on 

the occupational dimension, it affects hiring more programmers. On the skill level, it drives 

workers to learn a programming language such as C or Python. Firms can also move in 

response to changes in market conditions, such as mergers and acquisitions of competitive IT 

ventures. Hence, we can imagine the labor market as a high-dimensional space of multiple 

types of entities, where each entity is categorized into multiple units — industry, occupation, 

skill, and firm in the current example.  

However, existing studies have focused on a single unit (industry, occupation, skill, or 

firm) separately or a relationship between two units. They give a unique framework of the 

single unit in the labor market but don't capture the global structure of the labor market. Here, 

we create a high-dimensional embedding space of heterogeneous units in the labor market, 

called Labor Space, using the word embedding approach. 

In our analysis of the Labor Space, we can quantify the semantic relationships within the 

labor market system. These methods allow us to determine the proximity or distance between 

different entities. Interestingly, we can identify specific conceptual dimensions, such as the 

production-healthcare and tradable-nontradable axes. Also, these axes are particularly 

informative when understanding the topology of heterogeneous economic units in the Labor 

Space. We identify spectra of all the labor market entities along the production-healthcare 

axis, in which spatial movement in the Labor Space indicates a semantic shift in a given 

dimension. These findings highlight the potential of the Labor Space to reveal complex 

relationships between various entities in the labor market. Additionally, the vector operation 
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in the Labor Space quantifies the relationship between target and object, clearly 

understanding their interconnectedness within the labor market ecosystem. It allows us to 

discern how closely linked various labor market entities are to AI. For instance, it can reveal 

whether certain jobs or industries are highly susceptible to AI's influence or, conversely, if 

they are less affected. In summary, Labor Space allows for measuring conceptual similarity 

between different entities, giving clues for interaction within the labor market's intricate 

ecosystem or external factors. 

 

2. Related Works 

2.1 Analysis of the labor market and its entities 

To gain a comprehensive understanding of the labor market, it is imperative to adopt an 

ecological and holistic perspective that considers the intricate interplay between these 

entities. However, since there has been a lack of systematic methods to map and integrate 

these units into a unified space, many existing studies have focused on examining singular or 

bipartite aspects of the labor market. For instance, Neffke and Henning (2008) delved into the 

economy's structural transformation, shedding light on the evolution of the industry space. 

Neffke and Henning (2013) introduced an index of skill-relatedness among industries, 

enabling predictions regarding corporate diversification based on labor flows across 

industries. Alabdulkareem et al. (2018) provided valuable insights by visualizing a skill 

space, revealing the polarization of cognitive and physical skills as an explanation for wage 

inequality. Meanwhile, Anderson (2017) offered evidence suggesting that individuals with a 

broader range of skills tend to receive higher wages than those with narrower, specialized 

skill sets. Conversely, Anders et al. (2013) highlighted that firm-level factors, such as 

productivity and trade participation influence within-sector and within-occupation wage 

inequalities. Bana et al. (2020) constructed an occupation space to characterize how 
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occupations change over time. While these studies have provided unique insights into the 

individual components of the labor market, their focus on singular units has limited our 

ability to comprehend the intricate and multifaceted features of the labor market system, 

which is inherently driven by interactions among multiple units. A more comprehensive 

approach is needed to unravel the complexities of this dynamic ecosystem and shed light on 

its holistic structure. 

 

2.2 Application of language models in social science. 

The word embedding has demonstrated its ability to capture semantic or syntactic relations 

between words [Mikorov et al., 2013a, Pennington et al., 2014, Devlin et al., 2018, Vaswani 

et al., 2017] and high performance in text generation tasks [OpenAI, 2023]. Numerous 

studies have employed word embedding techniques within the field of social science. In 

social science, research using word embeddings delves into several key areas. Some studies 

have investigated word-to-word relationships within large corpora, or the transformation of it, 

providing evidence of how language and terminology evolve over time. Kozlowski et al. 

(2019) demonstrate the use of word embedding models to track semantic transformations 

related to social class in a large corpus of books, revealing stable cultural dimensions with 

evolving class markers, notably the growing association of education with wealth. Grand et 

al. (2022) examine word meaning representation in the mental lexicon using computational 

models, extracting context-dependent relationships from word embeddings. Additionally, 

other studies evaluate document similarity, helping to uncover connections and patterns 

within textual datasets. Chau et al. (2023) connect the university's syllabus and occupational 

tasks using word embedding to understand the specific skills students learn in higher 

education and how these skills relate to job opportunities and earnings. Also, Autor et al. 
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(2022) match patent abstracts to occupational tasks to distinguish whether innovation is 

labor-augmenting or labor-automation.  

Moreover, other applications of word embedding in social science assess the influence of 

generative language models on various linguistic and semantic aspects, shedding light on 

how language models impact language understanding and generation in the prospect of social 

sciences. Eloundou et al. (2023) explore the impact of large language models on the US labor 

market, finding that various jobs across income levels could see task changes due to these 

models, potentially leading to increased efficiency and broader implications. 

 

3. Data and Methods 

3.1 Descriptions 

Table 1 : Data descriptions and sources 

Entity Data Source Number of Entities Example 

Industry NAICS 308 

Metal ore mining comprises establishments 

primarily engaged in developing mine sites or 

mining metallic minerals, and establishments 

primarily engaged in ore dressing and 

beneficiating (i.e., preparing) operations, such 

as crushing, grinding, washing, drying, 

sintering, concentrating, calcining, and 

leaching.  Beneficiating may be performed at 

mills operated in conjunction with the mines 

served or at mills, such as custom mills, 

operated separately. 

Occupation O*NET 1,016 

Data scientists develop and implement a set 

of techniques or analytics applications to 

transform raw data into meaningful 

information using data-oriented programming 

languages and visualization software. 

Skill ESCO 307 

Counseling assists others to gain access to 

social, legal or other services and benefits, 

including making referrals to other 

professionals and organizations. 

Firm Crunchbase 489 

Meta is a social technology company that 

enables people to connect, find communities,  

and grow businesses. Previously known as 

Facebook, Mark Zuckerberg announced the 

company rebrand to Meta on October 28, 2021 

at the company's annual Connect Conference.~ 
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3.1.1 NAICS 

We use the North American Industry Classification System (NAICS) as a framework to 

incorporate industry entities into our Labor Space analysis. An industry description example 

can be found in Table 1. NAICS is the universally recognized system employed by various 

federal statistical agencies in the United States to categorize business establishments 

systematically. This classification system effectively organizes business activities, offering a 

hierarchical structure that involves 2-digit to 6-digit levels, each signifying the scope and 

range of specific industry activities. The embedding target is on the 4-digit industry 

classification, encompassing 308 distinct titles and descriptions. 

 

3.1.2 O*NET 

Our occupation data is sourced from the Occupational Information Network [O*NET, 

2022], a robust database that offers comprehensive insights into a diverse range of 

contemporary professions within the American workforce. This data repository is prominent 

in academic research due to its extensive coverage and reliability. Table 1 presents an 

illustrative occupation description, explicitly highlighting the role of data scientists. 

Occupational embedding vectors are 1,016 unique occupation titles and corresponding 

descriptions drawn from the O*NET 27.3 database. 

 

3.1.3 ESCO 

We extract skill components from the European Skills, Competences, Qualifications, and 

Occupations (ESCO) system, which serves as a multilingual classification system designed 

for the European labor force. ESCO offers an extensive collection of approximately 15,000 

skill units organized within a hierarchical structure from level 0 to level 3. For our analytical 
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purposes, we specifically focus on skill hierarchy level 3, which comprises 307 unique skill 

names and associated descriptions. Table 1 displays an example skill from this category. 

 

3.1.4 Cruchbase 

We collect firm entities from Crunchbase.com, a comprehensive platform renowned for 

offering detailed insights into companies, startups, investors, and industry dynamics. We 

specifically chose representative subset companies listed in the S&P 500 on the U.S. stock 

market and extracted their descriptive data. Among them, the social media company 'Meta' is 

available in Table 1. 

 

 

Figure 1 : Constructing the Labor Space 

 

Note : (A) Sample entity description from the 2,120 available. (B) Google's BERT, fine-tuned with descriptions 

from NAICS, O*NET, ESCO, and Crunchbase, predicts the [Mask] token using its context, learning labor market 

nuances. (C) We craft inter-relations between Labor Space entities using paired datasets, as magnified in the right-

side figure. (D) Both contextual and relational information is captured in BERT's final hidden layer, from which 

we extract word vectors. (E) A full description vector is represented by averaging its word vectors. (F) Each vector 

is then labeled with its corresponding title. This results in a vectorized representation of diverse labor market units, 

illustrating their inter-relations and trajectories in the vector space. 
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3.2 BERT model 

To quantify the conceptual similarities among heterogeneous types of entities in the labor 

market, we use the widely adopted pre-trained word embedding model, Bidirectional Encoder 

Representations from Transformers [Devlin et al., 2018]. Studies have shown that embedding 

models are capable of representing rich semantic relationships between words through spatial 

relationships in a vector space [Mikolov et al., 2013a, Mikolov et al., 2013b, Mnih and 

Kavukcuoglu, 2013, Dong et al., 2017, An et al., 2018]. We choose the BERT, based on the 

Transformer architecture, which complements the shortcomings of existing word embedding 

models and achieves breakthrough performance in various natural language processing tasks 

[Devlin et al., 2018]. 

 

3.3 Fine-tuning for context learning 

Although the base BERT model excels in general language tasks, it struggles with domain-

specific nuances, particularly in scientific or medical texts [Lee et al., 2020, Beltagy et al., 

2019, Chalkidis et al., 2020]. We fine-tuned the original BERT model using HuggingFace's 

'fill mask' pipeline. We created a domain-specific textual dataset, merging (1) 308 NAICS 4-

digit descriptions, (2) O*NET descriptions for 36 skills, 25 knowledge domains, 46 abilities, 

and 1,016 occupations, (3) ESCO's descriptions about 15,000 skills and 3,000 occupations, 

and (4) 489 Crunchbase S&P 500 firm descriptions. Our fine-tuning setup comprised a 

maximum token length of 512, hyperparameters configured for three epochs, a batch size of 

8, and a learning rate 2e-5. All training took place on an RTX 3080 Ti GPU. 

 

3.4 Fine-tuning for relation learning 

Following our initial fine-tuning process to contextualize labor market information, we do 

a supplementary fine-tuning process to incorporate inter-entity relationships. This approach 
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was inspired by recent research, specifically, Cohan et al.'s (2020) work establishing 

connections between scientific papers through citation networks. To achieve this, we crafted 

three distinct datasets to facilitate relationship training across different labor market entities: 

We constructed a classification triplet consisting of three entity descriptions: an anchor, a 

positive, and a negative sample. The anchor serves as the focal entity for which our model 

seeks to learn relational representations. Positive samples represent related entities, while 

negative samples represent unrelated ones. Anchors were randomly chosen from 308 

industries, 1,016 occupations, 307 skills, and 489 firm descriptions sequentially. We assigned 

positive and negative entities by considering the classification hierarchy system. Entities with 

the same classification system were designated positive samples, while those with differing 

systems were given negative samples. Unique classification systems were utilized for each 

entity type, such as 2-digit NAICS classification for industries, 2-digit SOC classes for 

occupations, second-level ESCO classes for skills, and 2-digit General Industry Classification 

System (GICS) for firms. The triplet loss function was employed in this dataset, encouraging 

the anchor embedding to be closer to positive and farther from negative samples, thus 

enhancing the model's capacity for discrimination in the embedding space. 

To establish connections between industries and occupations, we conjugated data from the 

Occupational Employment and Wage Statistics (OEWS), which offers the number of workers 

across various occupations within each industry. By computing the proportion of 

employment for each occupation within an industry, we identified the occupations most 

strongly linked to specific industries. Using cosine similarity as the loss function, we trained 

our model to capture the relatedness between sectors and professions. 

For training relationships between occupations and skills, we turned to the ESCO dataset, 

which categorizes skills as essential, optional, or irrelevant for each occupation. From this 

dataset, we made pairs, with occupation descriptions as anchor samples and skill descriptions 
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as positive samples, when the relationship between an occupation and a skill was deemed 

essential or optional. To apply connections between occupations and skills to our Labor 

Space, we adopted the multiple-negatives-ranking loss function, which adjusts weights based 

on pair data, bringing occupations and skills closer together in the vector space. This 

additional fine-tuning process was designed to capture intricate inter-entity relationships 

within the labor market. It involved three datasets focused on classification triplets, industry-

occupation pairs, and occupation-skill pairs, thereby empowering the model to comprehend 

and represent complex connections among various labor market entities. 

 

3.5 Obtaining vectors for labor market entities 

To map entity descriptions to vector space, we utilize the BERT Wordpiece tokenizer to 

encode raw text into token sequences with associated token IDs. It transforms the original 

descriptions into sequences of tokens, the semantic units BERT comprehends. BERT then 

translates these token sequences into a matrix, where each row represents a 768-dimensional 

vector corresponding to a token ID (as depicted in Fig. 1D). 

We perform a linear combination of individual word vectors to obtain a singular 

representation of the input description. This involves summing the embeddings of all words 

in the sequence and dividing by the word count (as shown in Fig. 1E). This process captures 

the overall semantic essence of the description. Each description embedding is associated 

with its respective title for clear identification. 

 

4. Landscape of Labor Space 

The Labor Space is an embedding framework where industries, occupations, skills, and 

firms are represented in a high-dimensional vector space. The current version encompasses 

308 industries, 1,016 occupations, 307 skills, and 489 firms, with the potential for further 
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integration as long as representative description texts are available. In this Labor Space, the 

proximity of entity vectors is quantified using cosine similarity, effectively reflecting their 

conceptual similarity within the labor market. For instance, when considering the occupation  

 

 

Figure 2 : Visualizing the Labor Space 

Note : (A) Labor entities, originally 768-dimensional, are mapped to a 2D space using UMAP. (A1) Highlighted 

values in the Tradable--Nontradable dimension show close ties with real estate. (A2, A3) Construction-related 

entities cluster due to the industry's blend of manufacturing and tradability. (A4) Emphasized values on the 

Production-Healthcare dimension show deep ties to healthcare. (B) Map colored by cosine similarity between 

V(Tradable → Nontradable) and labor vectors; black rectangles indicate locations from A1, A2, and A3. (C) 

Distribution of cosine similarity between V(Production → Healthcare) and labor vectors; the black rectangle 

pinpoints the location in A4. 

 

'Economist,' the entities closest to it in the Labor Space are 'Statistician' (cosine similarity = 

0.78) in the occupation level, 'Administration of Economic Programs' (industry level, 0.76), 

'Analyzing Financial and Economic Data' (skill level, 0.66), and 'PayPal' (firm level, 0.57). 

Conversely, the entities farthest from 'Economist' are 'Funeral Attendants' (occupation, -
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0.34), 'Death Care Services' (industry, -0.12), 'Applying Textured or Masonry Coatings' 

(skill, -0.32), and 'John Deere' (firm, -0.13). 

Fig. 2A visually represents the Labor Space in two dimensions, with colors distinguishing 

entity types. One notable aspect of the Labor Space is how diverse labor market entities align 

with their conceptual similarity. Entities from all categories are distributed uniformly, 

offering a comprehensive overview of our economy. S&P 500 firms tend to cluster around 

specific industries, while occupations and skills bridge the spatial gaps. Additionally, entities 

with shared conceptual similarities tend to cluster spatially, such as those associated with real 

estate (Fig. 2A1), construction (Fig. 2A2 and Fig. 2A3, and healthcare (Fig. 2A4). This 

organized clustering within the Labor Space provides valuable insights for policymakers and 

business owners, enabling them to identify and prioritize essential skills and occupations 

relevant to specific industries or companies. 

 

5. Mapping heterogeneous units on the conceptual axis 

The Labor Space presents a unique capability to map various labor market entities across 

multiple economic dimensions through vector calculations. Fig. 2B and Fig. 2C illustrate the 

relative scores of labor market entities on two specific axes: 

1. Tradable-Nontradable Axis: This axis distinguishes between nontradable industries, 

such as local services (e.g., restaurants, grocery stores, and salons), and tradable 

sectors, encompassing businesses that produce exportable or importable products 

[Jensen et al., 2005]. 

2. Production-Healthcare Axis: This axis reveals the relative similarities between the 

production & manufacturing and healthcare & service industries. 

To construct an axis, we first identify a representative entity for each pole and then establish 

a conceptual vector connecting the two poles through vector subtraction [Peng et al., 2021]. 

By projecting labor market entities onto this axis vector using cosine similarity calculations, 
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we can measure their shared association in a continuous representation [Kozlowski et al., 

2019]. This approach enables the visualization and quantification of the positioning of labor 

entities along the industrial dimension within the Labor Space. Fig. 2B depicts the Tradable-

Nontradable dimension overlaid on Labor Space. Since the tradable and nontradable industry 

categories are not explicitly defined among our entities, we employ an auxiliary process to 

compute industry centroids (see Appendix 9.1). Entities associated with the nontradable 

sector, like real estate (Fig. 2A1). Similarly, Fig. 2C illustrates the distribution of projection 

values along the Production-Healthcare axis across Labor Space. Entities linked to 

production and manufacturing predominantly occupy the left side, whereas those associated 

with healthcare are situated toward the right. As we move from left to right, a clear transition 

is evident from the production to healthcare sectors. These projection maps, aligned with 

economic axes, provide a comprehensive view of the labor market structure, highlighting that 

our embedding space effectively captures the latent structure of the labor market. In further 

validating Labor Space's analytical effectiveness, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 present a 

continuous spectrum resulting from the projection of labor market entities along the 

Production-Healthcare dimension, with annotated representative entity titles. We offer sub-

spectrum plots for each classification system to validate entity alignment along this axis. The 

top 5 and bottom 5 sub-spectrum plots, sorted by mean projection value for each 

classification, are plotted for industries and occupations. 

 

  



 
 

16 
 

 

Figure 3 : Industry spectrum 

Note : All industry entities are projected onto the V(Production → Healthcare) axis. Vertical lines within the 

spectrum box show industry embedding projections. Representative industry titles are annotated using NAICS 2-

digit classification for sub-spectrum plotting. 

 

 

 

 

 

 

 

 

 

 

 

 

                    

                   

                        

            

                

                 
                      

                    

            

                         

                  

                 

             

         

              

               

            

                       

                    

                     

           

           

 

                  

                  



 
 

17 
 

 

Figure 4 : Firm spectrum 

Note : The same projection method applies to firms (using the General Industry Classification System) 
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Figure 5 : Skill spectrum 

Note : The same projection method applies for skills (using ESCOskill level two hierarchy). 

 

 

 

 

 

 

 

 

 

          

         

          

            

           

          

              

       

                    

                        

              

              

                 

             

                      

                           

                               

                  

                   
                      

                     

                     

                     



 
 

19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 : Occupation spectrum 

Note : The same projection method applies for skills (using Standard Occupation Classification) 

 

Projecting entities onto the conceptual axis yields reliable results across all labor market entity 

categories. Firms associated with materials, energy, and industrial utilities (e.g., Steel 

Dynamics and Caterpillar) are proximate to the production pole. At the same time, those 

offering services like healthcare, real estate, and finance (e.g., CVS Health and PayPal) are 

closer to the healthcare pole (Fig. 4). Similarly, skills and occupations tied to manufacturing 

tend to align with the left side (e.g., Machinists and Welders), while those connected to services 

shift to the right (e.g., Midwives and Nannies) (Fig. 5 and Fig. 6). This validation underscores 

the robustness of Labor Space in mapping concepts across diverse economic categories. 
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6. Vector calculation for economic analogy 

Is it possible to perform vector calculations between different types of economic entities? 

For example, can we compute V(Firm A) - V(Skill X) + V(Skill Y) to estimate the impact of 

a new entity's emergence or the absence of an existing entity from one category on an entity 

in another class? 

 

Figure 7 : Vector analogy of firm and industry entities 

 

One of the notable applications of word embedding is vector analogies, as demonstrated by 

equations like V('king') - V('man') + V('woman') ~ V('queen'). This showcases how word 

embedding captures semantic relationships, such as the relationship between 'king' and 

'queen' mirroring that between 'man' and 'woman'. 

In our Labor Space, we employ vector analogies to uncover latent connections between 

entities across categories. Fig. 7 illustrates relationships between firms and industries. The 

equation V(Firm A) - V(Industry B) + V(Industry C) ~ V(Firm D) signifies analogical 

relationships between firms and their corresponding industries. For instance, leading firms in 

beverages and restaurants are analogously related to Nike in the footwear sector (Fig. 7A, 7B, 
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and 7C). Another example from Fig. 7D suggests that if Amazon were to divest its web 

search and IT components but add physical stores, it would approximate Walmart within the 

S&P 500, as inferred from the vector equation V('Amazon') – V('Web Search Portals, 

Libraries, Archives, and Other Information Services') + V('Department Stores') ~ 

V('Walmart'). Similarly, eliminating Tesla of its electrical base but adding gasoline elements 

aligns it with Ford, as V('Tesla') - V('Other Electrical Equipment and Component 

Manufacturing') + V('Gasoline Stations') ~ V('Ford'). These vector operations encapsulate 

various interactions among labor market entities in reality.  

 

Table 2 : Vector analogy of heterogeneous labor market units  

 Formula Top 3 entities 

Occupation – Occupation ~ Occupation V('Data Scientist') - V('Statistician') 1. Data Architects 

2. Database Administrators 

3. Data Warehousing 

Occupation - Occupation ~ Skill V('Teller') - V('Cashier') 1. Monitoring financial and 

economic resources  

2. Managing Budgets or Finance 

3. Analysing Financial and 

Economic Data 

Occupation + Industry + Skill ~ Firm V('Mathematicians')  +  

V('Other Investment Pools and Funds')  + 

V('Providing Financial Advice') 

1. Principal Financial Group 

2. JP Morgan Chase 

3. Goldman Sachs 

 

Table 2 presents multi-unit vector calculations across diverse labor market entities. For 

example, the equation 'occupation A - occupation B ~ occupation C' illustrates what 

occupation A might resemble when lacking the attributes of occupation B. In this case, V(' 

Data Scientists') - V(' Statisticians') highlights the distinctive occupational traits of 'Data 

Scientists' compared to 'Statisticians,' revealing roles linked to data science but not statistical 

analysis, like Data Architects or Database Administrators. The formula 'occupation A - 

occupation B ~ skill C' emphasizes skills intrinsic to occupation A but not occupation B. The 

equation V('Teller') - V('Cashier') demonstrates that financial management and budgeting 
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skills are vital for 'Tellers' but less for 'Cashiers.' Lastly, the equation 'occupation A + 

industry B + skill C ~ firm D,' perhaps the most intricate analogy, exemplifies how vector 

analogies can be practically employed for career recommendations to job seekers. In our 

analysis, the result of V(' Mathematicians') + V(' Other Investment Pools and Funds') + V(' 

Providing Financial Advice') suggests optimal firms for mathematicians seeking roles in 

investment funds, leveraging their financial expertise. 

 

7. Estimating the impact of AI 

The labor market is transforming significantly due to the widespread adoption of artificial 

intelligence (AI) in various economic sectors. AI, deriving patterns from data, has raised 

concerns about potential job displacement [Autor, 2015, Bessen, 2019, Frank et al., 2019]. 

Recent situations have led to efforts to measure AI's impact on different occupations [Frey et 

al., 2017, Brynjolfsson and Mitchell, 2017, Acemoglu et al., 2020, Felten et al., 2021] to 

assist workers in adapting to changing job roles. 

So, can our Labor Space provide insights into AI's influence on the labor market, covering 

various aspects?  
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Figure 8 : Correlation between cosine similarity and exposure data 

 
Note : (A) The X-axis is industry exposure data to the top 10 AI applications, and the Y-axis is the cosine similarity 

of definition embedding of the top 10 AI application list and industry embedding vectors. Definition embedding 

is calculated using the same method as the Labor Space description embedding. (B) This figure replaces AIIE to 

AIOE data. (C) We pick up language modeling among the top 10 AI applications. The X-axis is the industry 

exposure score of language modeling, and the Y-axis is the cosine similarity between language modeling 

definition embedding and industry vectors. (D) Correlation plot of language modeling exposure in the occupation 

level. 

 

One notable feature of Labor Space is its scalability. It can easily accommodate new 

entities as long as sufficient descriptive texts are available. To explore Labor Space's 

capability to assess emerging technologies like AI, we compared our results with a previous 

study that quantified AI industry exposure (AIIE) and AI occupation exposure (AIOE) 

[Felten et al., 2021]. We used the top ten AI application definitions (see Appendix 9.2) from 

         

               

 

        

               

 

         

               

      

                             

      

          

                           

                       

                 

              

         

               

                                 

               
                  

                  

                       

                      

                   

              

                  

                                                              

                    



 
 

24 
 

that study and estimated AI's impact on industries and occupations by calculating cosine 

similarities between AI application vectors and industry/occupation vectors.  

Fig. 8A and Fig. 8B show the correlation between our cosine similarity scores for AI 

applications and established AIIE and AIOE metrics. The X-axis represents exposure scores 

from [Felten et al., 2021], indicating vulnerability to specific AI applications, while the Y-

axis shows cosine similarity scores between AI application vectors and Labor Space entities. 

These metrics exhibit a strong correlation, with a Pearson's correlation coefficient of 0.51 (p-

value < 0.001), suggesting that cosine similarity measures with new technology vectors can 

effectively assess AI exposure across different labor market aspects. 

Can refining our definitions provide sharper insights within the Labor Space? By focusing 

on language modeling applications from Felten et al. (2023), we isolated relevant 

descriptions, derived vectors, and recalibrated our cosine similarity analyses. The correlation 

between language modeling exposure scores (X-axis) and our computed cosine similarities 

(Y-axis) notably strengthened for occupational exposure (increasing from 0.47 to 0.59) while 

maintaining a robust correlation of 0.51 for industrial exposure (Fig. 5C and Fig. 5D). Labor 

Space tends to highlight higher AI exposure risks for entities whose tasks align with the 

capabilities of contemporary AI models. For example, entities like 'Software Publisher' and 

'Foreign Language Teachers' are perceived as more vulnerable, while financial domains show 

lower AI exposure, as reflected in language modeling AI exposure visualizations. While 

determining the absolute accuracy of these estimations is a future challenge, analyzing AI 

exposure through Labor Space underscores its versatility and provides a virtual platform for 

policymakers, researchers, and business leaders to conceptualize and simulate potential shifts 

affecting various labor market entities. 
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8. Discussion 

One of the challenges for researchers is capturing the high-dimensional nature of the labor 

market. Labor Space comprehensively represents the labor market by encompassing 

industries, occupations, skills, and firms, offering a holistic view of the ecosystem. Also, it 

allows for the measurement of conceptual similarity between different labor market entities, 

providing insights into their relationships and shared characteristics. Its scalability makes it 

adaptable to new entities, making it relevant for tracking emerging trends and technologies in 

the labor market. Moreover, the Labor Space enables the analysis of interconnectedness 

between different labor market components, aiding in understanding how changes in one area 

can affect others. Lastly, it can assess the impact of emerging technologies like AI on the 

labor market, helping to identify which industries and occupations are most affected. 

However, there are some potential shortcomings to consider. Firstly, the quality and 

availability of descriptive texts for entities are crucial, and if representative descriptions are 

lacking or biased, it can affect the accuracy and comprehensiveness of the Labor Space. 

Secondly, subjectivity can be introduced through the choice of parameters, such as the 

selection of descriptive texts and the configuration of the embedding model. Additionally, the 

Labor Space primarily relies on textual descriptions for entities. It may not fully capture other 

aspects of the labor market, such as quantitative data or dynamic changes over time. Lastly, it 

may not fully capture the dynamic nature of the labor market, as it provides a static snapshot 

based on available data. Despite these potential limitations, the Labor Space remains a 

powerful tool for gaining insights into the labor market's complexities and relationships 

among its various components. 
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9. Appendix 

9.1. Tradability score 

To make a tradable-nontradable dimension, we set the industry centroid with reference to the 

tradability score [Jensen et al., 2005]. Table 3 displays the tradability score for each NAICS 

2-digit classification. We designate industries with a score of 100 percent as either tradable or 

nontradable industry poles.  

 

Table 3 : Tradability score 

Percent of industry Nontradable Tradable 

Accommodation and food services 100 0 

Administrative and waste services 89.8 10.2 

Agriculture, forestry, fishing, and   hunting 0 100 

Arts, entertainment, recreation 90 10 

Construction 100 0 

Educational services 98.89 1.11 

Finance and insurance 32.05 67.95 

Government 90 10 

Healthcare and social assistance 97.8 2.2 

Information 34.1 65.9 

Manufacturing 0 100 

Mining 0 100 

Other services 100 0 

Professional Services 39.2 60.8 

Real estate and rental and leasing 100 0 

Retail trade 85.185 14.815 

Transportation and warehousing 0 100 

Utilities 40 60 

Wholesale trade 0 100 

 

9.2. Top 10 applications 

The Electronic Frontier Foundation (EFF), a respected digital rights nonprofit, has a 

substantial presence in the academic and research community and collects AI progress 

statistics from verified sources, including academic literature, blogs, and websites. The EFF 

selected the top 10 AI applications with recorded scientific progress since 2010, as these are 
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deemed to be experiencing rapid growth and have medium-term relevance. Table 4 gives the 

top 10 applications list and brief definitions. 

Table 4 : Top 10 applications 

AI application Definition 

Abstract strategy games 

The ability to play abstract games involving sometimes 

complex strategy and reasoning ability, such as chess, 

go, or checkers at a high level. 

recognition 
The determination of what objects are present in a still 

image 

Visual question answering 
The recognition of events, relationships, and context 

from a still image. 

Image generation The creation of complex images 

Reading comprehension 
The ability to answer simple reasoning questions based 

on an understanding of text. 

Language modeling The ability to model, predict, or mimic human language. 

Translation 
The translation of words or text from one language into 

another. 

Speech recognition The recognition of spoken language into text. 

Instrumental track recognition The recognition of instrumental musical tracks 

Real-time video games 
The ability to play a variety of real-time video games of 

increasing complexity at a high level. 
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