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A B S T R A C T   

This study examines the impact of barriers to knowledge diffusion in energy technologies in 29 countries from 
1990 to 2015, distinguishing between efficient fossil-based generation and mature renewable options, namely 
wind and solar. We show that knowledge flows are higher in countries with similar technological profiles, 
particularly for mature renewables. The study finds that international knowledge spillovers have increased in 
intensity for wind and solar, while the opposite is true for fossil-based technologies. That means that foreign 
knowledge has increasingly informed domestic investors and points to the key role that knowledge flows from 
abroad had in promoting innovation in low-carbon technology options. Integrated assessment models should 
account for the role international knowledge spillovers play in the generation of new knowledge and in 
contributing to rapid decrease in costs.   

1. Introduction 

Knowledge flows play an important role in (low-carbon) innovation. 
Existing literature shows that innovators build on the knowledge in their 
own country but also source knowledge from foreign inventor when 
they push the frontiers of their own knowledge [1]. Innovations in 
low-carbon technologies benefit from intertemporal knowledge spill-
overs [2] as well as from international knowledge spillovers [3]. In this 
paper, we focus on estimating the extent to which inventors in one 
country rely on foreign knowledge. This is an important research 
question because to date advanced climate mitigation technologies have 
been developed only by a handful of countries [4]. These small groups of 
countries play a big role in inventing and diffusing new and improved 
low-carbon energy technologies. Yet, to achieve stringent decarbon-
isation targets, low-carbon energy technologies have to be adapted to 
local conditions, and further improved [5]. In this context, a better 
understanding of how knowledge flows across countries is needed. 

This paper presents an up-to-date analysis of international knowl-
edge flows and spillovers in two key sets of low-carbon energy tech-
nologies: efficient fossil-based and mature renewable energy 
technologies. These two families of technologies play very different roles 
in decarbonisation pathways. Efficient fossil-based technologies are 
those which reduce energy use and carbon emissions by improving en-
ergy efficiency of fossil-fuel based power generation technologies [6]. 

These include, for instance, highly efficient gas-based generation tech-
nologies. Mature renewable energy technologies are those which can 
produce energy with no associated greenhouse gas emissions [7]. In this 
analysis, we restrict our attention to wind and solar technologies 
because they are the ones where significant reduction in costs have been 
achieved thanks to innovation and learning-by-doing dynamics over the 
last two decades. These technologies are now cost-competitive with 
fossil-based energy generation technologies [8]. Understanding the 
knowledge flows dynamics which have accompanied this large decrease 
in cost, and how they differ from knowledge flows patterns in 
fossil-based technologies, is an interesting case study which can inform 
future innovation policies as well as climate mitigation efforts. 

Our econometric approach builds on Peri [9] and Verdolini and 
Galeotti [3]. We postulate that spillovers depend on the ability to 
overcome key geographical, linguistic, economic, technological and 
policy-related knowledge diffusion barriers. This is in line with the 
extant literature, that shows that knowledge flows are reduced due to 
geographical [10], linguistic barriers [11] and trade barriers [12], while 
they are higher the more similar the technological expertise of two given 
countries [13] and the lower the distance in the policy space [14]. 

We use data for 29 countries, including fast-developing economies, 
over the years 1990–2015 to estimate the role of different knowledge 
diffusion barriers in mature renewable technologies as opposed to effi-
cient fossil-based generation. We focus both on the overall sample 
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period as well as on two sub-periods (1990–2002 and 2003–2015) to test 
whether the strength of different diffusion barriers has changed over 
time. This split is motivated by the fact that in 2003 the EU adopted the 
European Union (EU) Emissions Trading System (ETS) Directive [15]. 
We also explore the extent to which changes in spillovers patterns 
depend on the relative stringency of environmental policies of the source 
and the receiving country. Our paper differs from existing analysis 
because it focuses on a large set of countries and compares knowledge 
flows in two different technological domains. Grafström analyses in-
ternational knowledge spillover in wind power from 1978 to 2008 using 
patent data [16]. Peter shows evidence of policy-induced knowledge 
spillover in solar Photovoltaics (PV) in 15 Organisation for Economic 
Cooperation and Development (OECD) countries from 1978 to 2005 
[17]. 

Overall, we show that spillovers change over time, and do so 
differently for mature renewables as opposed to efficient fossil-based 
technologies. Geographical barriers reduce knowledge flows across 
both technological domains, but their role changes over time: 
geographical distance hindered knowledge flows comparatively more in 
mature renewables as opposed to efficient fossil-based technologies in 
the period 1990 to 2002, but not afterwards. Mature renewable energy 
knowledge flows easier across linguistic border than does fossil-based 
technology knowledge flows. Trade barriers do not hinder knowledge 
flows in either types of technologies. Technological distance hinders 
knowledge flows similarly in the period up to 2002 for mature renew-
ables as opposed to fossil-based technologies, but in the following period 
matters more for wind and solar, suggesting that as technologies mature, 
it is harder for knowledge to flow to countries which do not have a 
similar technological profile. 

We use our empirical results to build knowledge spillover matrixes 
that can be fruitfully used by modellers to update the calibration of 
knowledge production functions in integrated assessment model (IAMs) 
and more realistically model international knowledge spillovers. From a 
modelling point of view, overlooking the knowledge spillover effects 
that occur across countries may lead to an underestimation of the speed 
at which technology costs may decrease, or, conversely, and over-
estimation of the costs of compliance with stringent climate policy as we 
would underestimate the possibility that a given country builds on 
foreign knowledge to further innovate domestically. 

2. Method and data 

To examine the role of geographical, linguistic, economic and tech-
nological barriers in hindering knowledge flow across countries, we 
build on Peri [9] and Verdolini and Galeotti [3]. Specifically, as 
customary in the innovation literature, we use patents as an indicator of 
an innovation having taken place; citations between patents of different 
countries are considered a proxy of international knowledge flows [3,9, 
18–20]. The advantage of using patent and patent citation indicators lies 
in the richness of information they provide. Patents can be relatively 
easily classified as belonging to a given technology field and country. 
Patent citations represent a “trail” of knowledge flows: it is mandatory 
for inventors to cite “prior art.” For these reasons, these data have been 
widely used, although they still suffer from several shortcomings. These 
include the fact that patent counts to not reflect commercial value of the 
innovation and may be the results of strategic patenting behaviors, and 
the fact that patent citations may be only a partial proxy of knowledge 
flows [21]. 

Our baseline econometric model is as follows: 

ci,j = exp

[

ai + aj +
∑7

n=1
bnxn(i,j) + μi,j

]

(1) 

The number of total citations c received from patents in country i 
from patents in country j within 5 years of the application date of the 
cited patent is a function of citing country and cited country fixed effects 

(ai and aj) and of a number n of diffusion barriers x. We compute ci,j for 
both mature renewables and for efficient fossil-based technologies for 
the full sample period (1900–2015) and for two sub-periods (1990–2002 
and 2003–2015). 

The citing and cited countries fixed effects ai and aj control for the 
different propensity to patent and to cite across countries. Conversely, 
the xn(i,j) variables represent time-invariant geographical, linguistic, 
economic and technological barriers to knowledge flows, and are 
defined as follows: 

x1(i,j) is a dummy variable equal to 1 if the citing and cited countries 
are different. We expect the coefficient b1 associated with x1(i,j) to be 
negative, indicating that any country would cite foreign patents less 
frequently than domestic patents [22]. 

x2(i,j) is the geographical distance between citing and cited countries 
based on the longitude and latitude. The distance data is measured by 
the shortest geographical distance (most populated cities, km) from 
GeoDist database [23].1 We expect the coefficient b2 associated with 
x2(i,j) to be negative, implying that an increase in geographical distance 
further lowers the probability of citation [24]. 

x3(i,j) is a dummy variable equal to 1 if the citing and cited countries 
have different official languages, and equal to 0 if they have at least one 
official language in common. The official language refers to languages 
spoken by at least 20% of the population of the country. As a country can 
have several official languages, we compare up to three official lan-
guages based on the database [25]. This index captures the presence of 
linguistic barriers. We expect the coefficient b3 associated with x3(i,j) to 
be negative, indicating that knowledge flows are higher between 
countries which share a common language [11]. 

x4(i,j) measures trade barriers. The variable is calculated as the share 
of years in which the citing and cited country are not part of the same 
Free Trade Agreement (FTA). When this index is equal to one, the two 
countries are never part of the same FTA for the whole sample period (or 
analysed subperiods). When it is equal to zero, the two countries are 
always part of the same FTA. Belonging to the same FTA is based on 
Mario Larch’s Regional Trade Agreements Database [26]. We expect the 
coefficient b4 associated with x4(i,j) to be negative as trade borders 
represent barriers for knowledge flows [27]. 

x5(i,j) is an index that varies between 0 and 1 and measures techno-
logical distance in innovation between the citing and the cited country 
over the whole sample period (or sub-periods). Or the corresponding 
sub-period when we estimate equations for different time periods. The 
index is adapted from Jaffe [28] and calculated as follows: 

x5(i,j) = 1 −

(
h′

ihj
)

[∑
s(h

′
i,s

)2(
hj,s
)2
]1/2 (2)  

Where h is a share of patents in each technology field s (Appendix 
Table A1) for the entire period of study. When the index is equal to 1, the 
countries that have completely different innovation profiles, i.e., their 
innovation efforts are focused on completely different technologies. 
Conversely, when the index is equal to 0, the countries are completely 
similar in their innovation profile. The coefficient b5 associated with 
x5(i,j) is expected to be negative. This implies that the more similar the 
two countries are in technology space, the more likely they are to cite 
each other [29]. 

x6(i,j) is an index measures distance in the level of technological 
development of the citing country i with respect to the cited country j in 
each technology fields (Appendix Table A1). The index is based on [30] 
and is calculated as the ratio of the average number of citations received 

1 It is note that we added two missing countries from the database manually 
(e.g. Liechtenstein (latitude = 47.166 and longitude = 9.5554) and Monaco 
(latitude = 43.733334 and longitude = 7.416667)). 
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by patents in citing country i to the average number of citations received 
by patents in the cited country j within the same technological field s, 
minus one: 

x6(i,j) =
∑

s

(
fi,s

fj,s

)

− 1 (3) 

Unlike other variables, x6(i,j) can take both positive or negative 
values. It is less than zero if the low-carbon technologies patents of the 

Table 1 
Summary statistics of patents by innovating countries for mature renewable energy (upper panels) and fossil-based (lower panels) technologies, 1990–2002 (left) and 
2003–2015 (right).  

Citing country Mature renewable technologies 1990–2002 Mature renewable technologies 2003–2015 

No. of patents % over sample No. of citations % over sample No. of patents % over sample No. of citations % over sample 

DE 410 23.87 1039 19.98 4169 21.23 20,331 18.02 
CH 379 22.06 1032 19.85 2386 12.15 12,387 10.98 
US 291 16.96 1146 22.04 3799 19.34 29,837 26.44 
JP 207 12.04 692 13.31 1174 5.98 5589 4.95 
NL 75 4.35 191 3.67 464 2.36 2269 2.01 
DK 60 3.48 113 2.17 1569 7.99 9321 8.26 
GB 59 3.41 212 4.08 849 4.32 5018 4.45 
FR 45 2.64 117 2.25 941 4.79 3909 3.46 
IT 40 2.32 126 2.42 570 2.90 2618 2.32 
AU 36 2.10 111 2.14 158 0.80 783 0.69 
BE 34 1.95 88 1.69 213 1.08 1276 1.13 
SE 22 1.28 118 2.27 165 0.84 691 0.61 
AT 21 1.20 75 1.44 189 0.96 1275 1.13 
ES 10 0.59 20 0.38 727 3.70 3825 3.39 
NO 7 0.38 41 0.79 99 0.50 674 0.60 
CA 6 0.36 33 0.63 175 0.89 1320 1.17 
IE 5 0.26 16 0.31 29 0.15 180 0.16 
FI 3 0.17 6 0.12 92 0.47 390 0.35 
KR 3 0.17 7 0.13 1124 5.72 6842 6.06 
RU 2 0.09 3 0.06 41 0.21 199 0.18 
HU 1 0.08 7 0.13 11 0.05 31 0.03 
CN 1 0.06 – – 463 2.36 2523 2.24 
PL 1 0.06 1 0.02 29 0.15 105 0.09 
PT 1 0.06 1 0.02 26 0.13 131 0.12 
IN 1 0.04 3 0.06 144 0.73 1065 0.94 
SI 1 0.03 1 0.02 7 0.04 24 0.02 
BR – – – – 12 0.06 77 0.07 
CZ – – – – 8 0.04 50 0.04 
GR – – – – 11 0.06 88 0.08 

Citing country Fossil-based technologies 1990–2002 Fossil-based technologies 2003–2015 
No. of patents % over sample No. of citations % over sample No. of patents % over sample No. of citations % over sample 

US 254 30.29 794 35.40 632 29.86 4809 46.85 
CH 169 20.11 466 20.78 290 13.71 1220 11.89 
DE 162 19.27 337 15.02 423 19.98 1103 10.75 
FR 49 5.88 153 6.82 146 6.88 605 5.89 
GB 41 4.92 129 5.75 93 4.37 604 5.88 
JP 34 4.09 110 4.90 52 2.46 164 1.60 
SE 21 2.45 39 1.74 61 2.89 195 1.90 
FI 18 2.12 21 0.94 40 1.88 118 1.15 
IT 18 2.10 30 1.34 79 3.73 230 2.24 
NL 17 2.02 35 1.56 27 1.28 75 0.73 
DK 10 1.19 16 0.71 24 1.15 69 0.67 
CA 10 1.13 17 0.76 30 1.39 348 3.39 
AU 9 1.07 24 1.07 16 0.73 62 0.60 
NO 7 0.81 31 1.38 15 0.72 60 0.58 
AT 7 0.77 3 0.13 32 1.51 47 0.46 
BE 5 0.54 6 0.27 18 0.84 69 0.67 
BR 2 0.22 14 0.62 2 0.09 4 0.04 
ES 2 0.18 5 0.22 12 0.54 51 0.50 
RU 2 0.18 – – 2 0.09 7 0.07 
GR 1 0.12 3 0.13 4 0.19 22 0.21 
HU 1 0.12 3 0.13 4 0.19 11 0.11 
IN 1 0.12 2 0.09 31 1.48 129 1.26 
KR 1 0.12 1 0.04 46 2.18 134 1.31 
CN 1 0.06 – – 20 0.92 83 0.81 
PL 1 0.06 2 0.09 10 0.45 19 0.19 
SI 1 0.06 2 0.09 2 0.09 4 0.04 
CZ – – – – 6 0.29 14 0.14 
PT – – – – 2 0.07 8 0.08 

Notes: self-citations (citations to the same assignee) are excluded. Country names and two-letter codes by Patent Cooperation Treaty (PCT) applicant’s guide. A list of 
countries: AT (Austria), AU (Australia), BE (Belgium), BR (Brazil), CA (Canada), CH (Switzerland), CN (China), CZ (Czech Republic), DE (Germany), DK (Denmark), ES 
(Spain), FI (Finland), FR (France), GB (United Kingdom), GR (Greece), HU (Hungary), IE (Ireland), IN (India), IT (Italy), JP (Japan), KR (Republic of Korea), NL 
(Netherlands), NO (Norway), PL (Poland), PT (Portugal), RU (Russia), SE (Sweden), SI (Slovenia), US (United States). 

Y.J. Kim and E. Verdolini                                                                                                                                                                                                                     



Energy Strategy Reviews 49 (2023) 101151

4

citing country give rise to fewer knowledge spillovers (i.e., they are less 
cited) than those granted to the cited country. Conversely, it is greater 
than zero if the patents granted to the citing country give rise to more 
knowledge spillovers (i.e., they are more cited) than those granted to the 
cited country. An index of 0 indicates that the patents granted in the 
citing country are on average as cited and important as those by the cited 
country [9]. We expect the coefficient b6 associated with x6(i,j) to be 
negative, implying knowledge flows are from the frontier countries and 
towards the laggard countries [3]. 

In addition to the traditional variables measuring geographical, lin-
guistic, trade and technological distance, we also estimate a model 
which accounts for distance in the space of environmental policies. A 
few recent analyses have put forward suggestive evidence that distance 
in the environmental policy space may affect the rate of knowledge flow 
between two countries. Conti et al. [31], for instance, show that 
knowledge flows increase as together among those countries of the EU as 
a consequence of the increase in the stringency in environmental pol-
icies. Dechezleprêtre et al. [32] show that the similarity of environ-
mental policy stringency between two countries positively matters for 
knowledge spillovers. Similarly, Milani [33] argues that market-based 
environmental policies increase cross-country knowledge collabora-
tion on the ground that innovators innovate to respond to regulation. 

The index measuring distance in the policy space is built using data 
from the OECD Environmental Policy Stringency Index (EPS) database. 
The EPS provides country-specific measures of the stringency of several 
environmental policy instruments over the years 1990–2011 [34]. The 
index is calculated as follows: 

x7(i,j) = 1 −

(
k′

ikj
)

[∑
s(k

′
i,p

)2(
kj,p
)2
]1/2 (4)  

Where k is the percentage share of the sum of environmental policy 
stringency across all years (1990–2011) and different types of policy 
instruments (p). These include R&D subsidies, taxes, trading schemes, 
feed-in-tariffs, and standards. The index x7(i,j) ranges between 
0—indicating countries with completely similar policy profiles—and 
1—indicating completely different policy profiles. A negative coefficient 
b7 associated with x7(i,j) would imply that the more similar the policy 
portfolios in the two countries, the higher knowledge flows [33]. We 
expect the coefficient b7 to be negative, implying the higher the policy 
distance hinders the knowledge flows [14]. 

Using the estimated parameters from equation (1), we then generate 
diffusion parameters Φ̂i,j defined as: 

Φ̂i,j = exp

[
∑N

n=1
b̂n xn(i,j)

]

(5)  

Where Φ̂i,j is the estimated probability of knowledge flows from cited 
country j to citing country i. In practice, Φ̂i,j represents the portion of 
knowledge flows that can be predicted to occur between two countries 
given their geographical, linguistic, trade and technological distance. In 
this approach, intertemporal knowledge flows from domestic knowledge 
Φ̂i,i is equal to 1 by construction, as all distance variables between 
country i and itself would be zero. Conversely, Φ̂i,j < 1 because only a 
fraction of the knowledge produced in i will reach j after passing 
geographical, linguistic, economic and technological barriers. In this 
context, Φ̂i,j represents the probability of citation from patents invented 
in country i and year t to patents invented in country j between the years 
t-1 and t-5 relative to the probability that any inventor from country i 
cites a patent originating from country i over the same time period. 

The econometric exercise we carry out is structured as shown in 
Fig. 1. In first instance, we provide estimates of equation (1) for both 
mature renewable energy and efficient fossil-based technologies. This is 
meant to highlight any difference in average knowledge flows for these 

two very different sets of options over the entire sample period. Second, 
we split our sample into two periods (1990–2002 and 2003–2015) and 
repeat the estimation for both technology groups. This allows us to 
gauge any changes in spillovers intensity over time. Third, we repeat the 
analysis including an indicator measuring distance in the environmental 
policy space to test whether this plays a role in the diffusion of knowl-
edge. Equation (1) is estimated using a negative binomial approach to 
account both for the count data nature of the dependent variable and for 
the over-dispersion in the data [35,36]. 

To identify mature renewable and fossil-based technologies, we 
follow a tagging system by the European Patent Office (EPO). We 
categorise the relevant patents by technologies defined by Y02 (climate 
change mitigation technologies) as of January 2018. Appendix A shows 
how we define technology fields and merge each table in the EPO’s 
Worldwide Patent Statistical Database (PATSTAT) 2020 Autumn 
Edition. 

We consider citing patents (i.e., mature renewables and efficient 
fossil-based energy technologies) applied for between 1990 and 2015, 
and cited patents applied for between 1985 and 2014 (in line with our 5 
year-citation lag). The countries in our sample include 29 countries 
including key developing countries (e.g., China, India, Russia, Brazil). 
We consider all possible combinations of citing-cited countries, for a 
total of 29 × 29 = 841 observations. If a given country never cites 
another given country, we input zero citations. 

3. Results and discussion 

3.1. Descriptive analysis 

Fig. 2 shows the number of patents and the number of citations in our 
sample—Panel (a) and Panel (b), respectively—to examine temporal 
trends. The number of patents for both technological fields skyrocketed 
after 2002 and peaked around in 2010, after which they started to 
decline [37]. Innovation dynamics differ significantly for the two sets of 
technologies in our analysis: in 2010, the peak year, mature renewable 
patents were 67-fold higher than in 1990. Conversely, in 2010, 
fossil-based patents were 10-fold higher than in 1990. Afterwards, the 
number of patents decreases for both technologies; this is a natural 
consequence of the truncation of our data, as more recent patents take 
time to be recorded in the data. 

Citation patterns exhibit a similar pattern. Citation dynamics also 
differ significantly for the two sets of technologies: in 2010, the peak 
year, mature renewable patent citations were 75-fold higher than in 
1990. Conversely, fossil-based patents were 10-fold higher in 1990. 

Table 1 shows the number of patents, share of patents over sub- 
sample, citations and share of patent citations by innovating countries 
for both sets of technologies and for the two sub-periods. Mature re-
newables and fossil-based patents represent 88% and 12% of the sample, 

Fig. 1. Flow flowchart.  
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respectively. For both types of technologies, Germany, Switzerland and 
the US are the top three inventors as well as the countries which receive 
the most citations. Together, these countries account for 63% (53%) of 
mature renewable energy patents and for 70% (64%) of fossil-based 
patents in the first (second) period. The corresponding percentages in 
terms of citations received are 62% (55%) for mature renewables and 
71% (70%) for fossil-based technologies. Different countries follow in 

the ranking of both patent numbers and citations received. 
Table 2 shows the descriptive statistics of the dependent variable, 

citations from country j to country i, and of our control variables 
measuring geographical, linguistic, economic and technological barriers 
between countries and distance in the policy space. This is balanced 
panel data with a lot of 0’s in the dependent and independent variables. 
The average number of citations in our sample is 203, with a standard 
deviation of 1,032, indicating large variations. Within country citations 
account for 3% of our sample; 89% (78%) of knowledge spillovers cross 
a linguistic border (trade border). The average distance in technological 
and policy space are 0.27 and 0.12, respectively; also in this case there is 
considerable variation in the sample. 

Fig. 3 shows the share of citations (i.e., top five citing countries) by 
technology field and country in the first and second periods. First, the 
top five patent citing countries in mature renewable technologies 
include Switzerland, Germany, the US, the UK, and Japan in the early 
period, but Japan was replaced by Korea in the latter period. Second, the 
top five patent citing countries in fossil-based has not changed from the 
early and latter periods of the study. 

3.2. Estimation results 

Table 3 shows the results of estimation of equation (1) for mature 
renewable energy and efficient fossil-based technologies over the full 
sample period (columns 1 and 2) and for the different sub-periods 
(columns 3 to 6). Compared to the pooled estimation of both 

Fig. 2. Number of patents (panel a) and citations (panel b) for mature renewables and fossil-based technologies 
Notes: The number of patents in mature renewables and fossil-based technologies in Panel (a) is on the left and right side of the axis, respectively. The number of 
citations in mature renewables and fossil-based technologies in Panel (b) is on the left and right side of the axis, respectively. 

Table 2 
Summary statistics.  

Variable [unit] Observation Mean Std. 
Dev. 

Min Max 

No. of citations [#] 841 203 1032 0.00 25,224 
Crossing country border 

[index] 
841 0.97 0.18 0.00 1.00 

Country distances [1000 
km] 

841 4.80 4.51 0.00 18.06 

Crossing linguistic border 
[index] 

841 0.89 0.31 0.00 1.00 

Crossing trade border 
[index] 

841 0.78 0.33 0.00 1.00 

Crossing technological 
distance [index] 

841 0.27 0.21 0.00 0.90 

Vicinity of citing to the 
frontier of cited [index] 

841 0.09 0.46 − 0.74 2.80 

Environmental policy 
stringency distance 
[index] 

841 0.12 0.09 0.00 0.45  
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Fig. 3. Share of citations by country for mature renewables (upper panels) and fossil-based (lower panels) technologies, 1990–2002 (left) and 2003–2015 (right) 
Notes: Country names and two-letter codes by Patent Cooperation Treaty (PCT) applicant’s guide. A list of countries: US (United States), DE (Germany), CH 
(Switzerland), JP (Japan), FR (France), DK (Denmark), GB (United Kingdom), KR (Republic of Korea). 

Table 3 
Barriers to knowledge diffusion in mature renewable technologies and fossil-based technologies, 1990–2015.   

(1) (2) (3) (4) (5) (6) 

Variables Full period 1990–2002 2003–2015 

Mature renewables Fossil-based Mature renewables Fossil-based Mature renewables Fossil-based 

Crossing country border       
− 1.238*** − 1.186*** − 1.488*** − 0.697*** − 1.185*** − 1.165*** 

Country distance (0.130) (0.188) (0.252) (0.248) (0.132) (0.195) 
− 0.014** − 0.031** − 0.033* − 0.028 − 0.011 − 0.031** 

Crossing linguistic border (0.007) (0.013) (0.018) (0.023) (0.007) (0.013) 
− 0.086 − 0.277*** − 0.014 − 0.251* − 0.081 − 0.280** 

Crossing trade border (0.070) (0.105) (0.142) (0.150) (0.071) (0.111) 
0.058 0.005 0.108 0.056 0.017 0.049 

Crossing technological distance (0.047) (0.146) (0.097) (0.198) (0.045) (0.144) 
− 1.402*** − 0.851*** − 0.808*** − 0.945*** − 1.452*** − 0.917*** 

Vicinity of citing to frontier of cited (0.155) (0.286) (0.290) (0.312) (0.158) (0.311) 
− 1.454*** 0.900 − 0.025 0.181 − 1.616*** 0.609 

Constant (0.288) (0.695) (0.085) (0.144) (0.312) (0.834) 
3.621*** 0.357 1.605*** − 2.975*** 3.532*** 0.230 

Observations (0.151) (0.314) (0.311) (0.726) (0.155) (0.330) 
841 841 841 841 841 841 

Citing country FE YES YES YES YES YES YES 
Cited country FE YES YES YES YES YES YES 

Notes: This table displays the estimation results of barriers to knowledge diffusion in mature renewables and fossil-based technologies, 1990–2015. Dependent variable: 
all citations within 5-year window from cited country j to citing country i. We measure the number of patent citations received by patents invented in climate 
mitigation technology fields (Table A1) from patents invented in mature renewables or fossil-based technologies. We re-constructed three independent variables 
(crossing trade border, crossing technological distance, and vicinity of citing to frontier of cited) to meet the given time period, respectively. Standard errors in pa-
rentheses: ***p < 0.01, **p < 0.05, *p < 0.1. 
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technologies shown in Table B1 technology-specific patterns emerge. 
Crossing a country border is a barrier to knowledge flow for both sets 

of technologies, albeit with different magnitude. Over the whole sample 
period, citation between two countries sharing a border is 29% (e− 1.238) 
as likely as citation to domestic patents for mature renewable technol-
ogies. The corresponding value for fossil-based technologies 31% 
(e− 1.186). In our case, the coefficient associated with crossing a country 
border is smaller than in Ref. [3], potentially indicating that the role of 
geographical barriers has decreased over time—as is the case for the 
trade literature [38]. Differently from Ref. [3], additional geographical 
distance behind the crossing of a country border hinders further 
knowledge flows: citing a country that is 4800 km away—the average 
distance in our sample—is 50% as likely as citing a neighboring country. 

Linguistic difference is a barrier to knowledge flow only in the case of 
fossil-based technologies: a citation between two countries which do not 
have the same official languages is 76% (e− 0.277) as likely as a citation 
between countries in the same official languages. Linguistic barriers are 
not associated with lower citation probabilities in the case of mature 
renewable technologies. 

Trade barriers, on the other hand, are not associated with lower 
knowledge flows in either technology. This is different from what [3] 
found in the much earlier period (1975–2000), but in line with evidence 
of a persistent decline in trade barriers between 2000 and 2014 [38]. 

Knowledge flows are more likely among countries whose innovation 
activities are similar, but technological distance represents a higher 
barrier in the case of mature renewable technologies. Over the sample 
period, citations between two countries with completely different 
mature renewable innovation profiles are about 25% (e− 1.402) as likely 
as between two countries with the same mature renewable technological 
profile. The corresponding value for fossil-based technologies is 43% 
(e− 0.851). Focusing on the two subperiods, results are generally similar 
for fossil-based technologies—39% (e− 0.945) and 40% (e− 0.917). 
Conversely, in the case of mature renewable technologies, citations 
between countries with completely different technological profiles are 
23% (e− 1.452) and 45% (e− 0.808) as likely as those between two identical 
countries for the first and second period, respectively. With respect to 
the variable measuring technological development (x6(i,j)), we note that 

the coefficient is significant, and negative, only in the case of mature 
renewable technologies for the full-period and the second sub-period. 

Table 4 displays the estimation results for mature renewables and 
fossil-based technologies including environmental policy stringency 
distance for the full period and the two subperiods. First, the coefficient 
associated with this variable over the whole sample period is not sta-
tistically different from zero for either technology. This implies that 
distance in the environmental policy space does not hinder the likeli-
hood of citation. However, note that the coefficient associated with this 
variable in the mature renewables model for the first time period is 
negative and significant, providing some albeit weak evidence that in 
the early years’ policy distance may have represented a barrier to 
knowledge diffusion. 

3.3. Inter-temporal heat maps 

We use the coefficients in Table 3 to generate matrixes of knowledge 
diffusion parameters for mature renewables and fossil-based technolo-
gies over the two periods of time 1990–2002 and 2003–2015 in our 
sample countries (Equation (5)). These heat maps visually illustrate the 
results from our empirical estimation. Citing countries, i.e., the coun-
tries receiving the knowledge, are listed in the rows, while cited country, 
i.e., the country source of knowledge, are listed in the columns. Note 
that the underlying data, i.e., the estimated shares of knowledge flowing 
between sending and receiving country in the two sample periods, is 
provided in Table B.2-5 in the Appendix. These can be fruitfully used to 
calibrate knowledge production functions in a wide range of models for 
integrated assessment of the energy, the economy and the climate. 

These heat maps should be interpreted keeping in mind that the di-
agonal entry is equal to 1 by construction, as previously explained. That 
is, the heat maps allow us to compare the intensity of the international 
knowledge received by the citing country as compared to the own 
knowledge it produces and builds upon. Also note that by construction, 
the estimated knowledge diffusion parameters are asymmetric, i.e., the 
intensity of knowledge flows between two countries differs depending 
on the direction of knowledge flow. 

A few key insights emerge. First, in the earlier period, the intensity of 

Table 4 
Barriers to knowledge diffusion in mature renewables and fossil-based technologies including environmental policy distance, 1990–2011.   

(1) (2) (3) (4) (5) (6) 

Variables Full period 1990–2000 2001–2011 

Mature renewables Fossil-based Mature renewables Fossil-based Mature renewables Fossil-based 

Crossing country border       
− 1.061*** − 1.387*** − 0.887*** − 0.944*** − 1.062*** − 1.483*** 

Country distance (0.133) (0.219) (0.281) (0.344) (0.132) (0.231) 
− 0.024*** − 0.039*** − 0.025 − 0.053* − 0.022*** − 0.031** 

Crossing linguistic border (0.008) (0.015) (0.018) (0.028) (0.007) (0.016) 
− 0.028 − 0.215* − 0.274* − 0.440** − 0.023 − 0.161 

Crossing trade border (0.071) (0.118) (0.154) (0.183) (0.071) (0.129) 
0.020 0.204 0.301*** 0.311 − 0.001 0.200 

Crossing technological distance (0.048) (0.166) (0.111) (0.249) (0.047) (0.174) 
− 1.687*** − 0.820*** − 1.932*** − 0.295 − 1.696*** − 0.688** 

Vicinity of citing to frontier of cited (0.164) (0.306) (0.328) (0.364) (0.165) (0.339) 
− 1.773*** 1.114 − 0.025 0.001 − 1.964*** 0.027 

Environmental policy distance (0.399) (0.985) (0.094) (0.133) (0.444) (1.289) 
− 0.398 0.143 − 0.946* − 0.154 − 0.374 0.576 

Constant (0.291) (0.571) (0.527) (0.689) (0.253) (0.551) 
3.256*** − 0.020 0.848** − 1.136** 3.217*** − 0.653 

Observations (0.154) (0.368) (0.346) (0.558) (0.156) (0.428) 
841 841 841 841 841 841 

Citing country FE YES YES YES YES YES YES 
Cited country FE YES YES YES YES YES YES 

Notes: This table displays the estimation results of barriers to knowledge diffusion in mature renewables and fossil-based technologies, 1990–2011. Dependent variable: 
all citations within 5-year window from cited country j to citing country i. We measure the number of patent citations received by patents invented in climate 
mitigation technology fields (Table A1) from patents invented in mature renewables or fossil-based technologies. We re-constructed four independent variables 
(crossing trade border, crossing technological distance, vicinity of citing to the frontier of cited, and environmental policy distance) to meet the given time period, 
respectively. Standard errors in parentheses: ***p < 0.01, **p < 0.05, *p < 0.1. 
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international knowledge flows in efficient fossil-based technologies 
relative to domestic knowledge flows was higher than for mature 
renewable technologies. For mature renewable technologies, domestic 
knowledge flows were much more intense (i.e., the cells are of a darker 
shade) than knowledge flows from abroad (Fig. 4), which were practi-
cally inexistent. Second, a very different picture emerges for the second 
period. On the one hand, the average relative intensity of international 
knowledge flows relative to that of domestic knowledge flows is higher 
for mature renewable technologies, including for those countries which 
did not benefit from knowledge spillovers in the earlier period. On the 
other hand, the opposite is true for fossil-based technologies: the relative 
intensity of international knowledge flows decreased as compared to 
domestic knowledge flows. This indicates that all countries in our 
sample rely less on international knowledge to foster domestic innova-
tion as compared to the previous period. 

4. Conclusion 

This paper estimates the role of barriers to knowledge diffusion in 

mature renewables and fossil-based technologies in a sample of 29 
countries—including fast-growing economies—over the period 
1990–2015. Our results provide a more nuanced picture than previous 
analyses. First, we show that geographical barriers hinder knowledge 
diffusion in both mature renewable and fossil-based technologies, but 
their role increases over time for former and not for the latter. Second, 
language is a barrier for knowledge flows only in the case of fossil-based 
technologies. Third, trade barriers do not appear to hinder knowledge 
flows in our sample. We show that knowledge flows are higher in 
countries with similar technological profiles. This is particularly true for 
mature renewable technologies. Our analysis does not support the 
conjecture that distance in policy space reduces the probability of 
knowledge flows. 

We use our empirical results to generate knowledge spillover pa-
rameters across countries for 1990–2002 and 2003–2015. These pa-
rameters further illustrate that international knowledge spillovers 
increased in intensity as compared to domestic spillovers for mature 
renewable technologies in the second half of the sample period. This is 
true in most countries in our sample, including those which showed no 

Fig. 4. Estimated diffusion parameters for mature renewables (upper panels) and fossil-based (lower panel) technologies, 1990–2002 (left) and 2003–2015 (right) 
Notes: Raw data is provided in Table B.2-5 in the appendix. Self-citations (citations to the same assignee) are excluded. Country names and two-letter codes by Patent 
Cooperation Treaty (PCT) applicant’s guide. A list of countries: AT (Austria), AU (Australia), BE (Belgium), BR (Brazil), CA (Canada), CH (Switzerland), CN (China), 
CZ (Czech Republic), DE (Germany), DK (Denmark), ES (Spain), FI (Finland), FR (France), GB (United Kingdom), GR (Greece), HU (Hungary), IE (Ireland), IN (India), 
IT (Italy), JP (Japan), KR (Republic of Korea), NL (Netherlands), NO (Norway), PL (Poland), PT (Portugal), RU (Russia), SE (Sweden), SI (Slovenia), US 
(United States). 
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benefits from international knowledge flows in the first half of the 
sample. The opposite is true for fossil-based technologies. 

Our findings confirm that knowledge spillovers have technology- 
specific dynamics, and that they are not static over time. Note that the 
estimated diffusion parameters for foreign knowledge to any country in 
our sample increased over time, particularly over the last decades in 
mature renewable technologies. Overall, this is consistent with the hy-
pothesis that domestic knowledge contributes to generating further 
knowledge also in foreign countries, ultimately increasing our decar-
bonisation options and lowering the costs associated with mitigation. 
Ignoring this fact in the generation of mitigation scenarios would lead to 
an underestimation of the benefits associated with innovation as well as 
to an overestimation of the costs associated with mitigating climate 
change. Conversely, low-decarbonisation pathways should account for 
these specificities. A fruitful avenue of further research lies in the use of 
our estimated diffusion parameters for the calibration of integrated 
assessment knowledge with endogenous, country- or region-specific 
knowledge production functions. 

Our paper also points to other interesting future research avenues. 
These include the need to further explore distance in the policy space as 
a potential factor hindering knowledge flows, as well as the careful 
estimation of cross-technology knowledge flows. This latter part is 
particularly important with respect to cross-technology spillover effect 
in the learning process of a country might hinder cross-country knowl-
edge spillovers. Cross-technology knowledge flows are also important 
with respect to digital technologies, and the role they are bound to play 
in the further development of energy technologies for effective mitiga-
tion. Furthermore, the future research avenue also includes the link 
between knowledge spillovers and cost reductions in low-carbon 
technologies. 

As any study, our paper has a few caveats. First, our set up ignores 
cross-country collaborations as an important avenue of knowledge 
spillovers, as we rely on citation counts but do not explore patents which 
are jointly filed by inventors in different countries. We leave this for 
further future analyses. Second, environmental policy distance is a 
newly proposed index in this paper, but there is room for improvement. 
Third, we consider only two sets of technology fields to compare which 
warrants the necessity of the more granular level of analysis including 
the rest of the distinct technology field (e.g., nuclear). 
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