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ABSTRACT 

HUMAN CAPITAL DEVELOPMENT AND HOUSEHOLD WELFARE 

IN MYANMAR 

By 

TIAL LEN PAR 

 

Chapter 1 investigates the long-term effect of exposure to earthquake being either in-

utero or two years of life on human capital outcomes — types of disability and years of 

education employing difference in differences strategy. We compare the human capital 

outcomes across the subpopulations of cohorts exposed to earthquake being either in-utero or 

two years of life using Myanmar census data. The results indicate that cohorts exposed to the 

earthquakes being either in-utero or two years of life have a higher probability of being disabled 

and less years of education. Moreover, the affected cohorts born in rural areas have a higher 

probability of being disabled than cohorts born in urban areas. Our findings suggest that being 

exposed to the earthquake in the early years of life negatively impact on human capital 

outcomes in the long run. 

Chapter 2 examines the effect of the cyclone Nargis on household expenditure and crop 

production in the Ayeyarwady delta region of Myanmar, using the Myanmar Integrated 

Household Living Conditions Assessment Survey and applying the difference-in-difference 

(DID) strategy. We compare household expenditure and crop producation across the 

subsamples between households in the severely cyclone-affected townships and less cyclone-

affected townships. The results show that the cyclone significantly reduces cropland, the 
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quantity of crops harvested, monthly non-food expenditure and health expenditure, and the 

cyclone increases the quantity of food bought as well as monthly food expenditure. Our 

findings suggest that the cyclone has a negative impact on crop production and household 

expenditure. 

Chapter 3 studies the impact of university expansion through distance education on 

graduates’ job market outcomes using Myanmar Labor Force Survey. To investigate the policy 

impacts, this study uses Difference-in-Differences (DID) approach exploiting variations in 

educational attainment and exposure to the policy intervention. Our findings suggest that the 

education expansion policy lead policy-affected graduates to the higher probability of being 

under unemployment, and the lower probability of having a formal job and getting a good job. 

Results also reveal the differential impacts of gender; male graduates have a higher probability 

of being under unemployment relative to female graduates; however, they have a higher chance 

to get a formal job and a good job. Estimates from the Difference-in-Differences integrated 

with Propensity Score Matching (PSM-DID) reassure the validity of the baseline estimates by 

purging the ability endogeneity. 

Keywords: Earthquakes, Human Capital, Cyclone, Household Welfare, Higher Education 

Expansion Policy, Job Market, Difference-in-Differences, Myanmar 
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CHAPTER 1 

EARLY LIFE EXPOSURE TO EARTHQUAKE AND ITS LONG-TERM 

EFFECTS ON HUMAN CAPITAL OUTCOMES 

 

1.1 Introduction 

Natural disasters are increasing in frequency owing to climate change resulting in a host of 

problems such as damage to properties, loss of lives, and environmental and public health 

challenges. Developing countries most often suffer from the devastating effects of these 

disasters. Asia accounts for the highest-burden of natural disasters globally. In 2018, Asia alone 

accounted for about 45 percent of global disaster events, and 80 percent of disaster deaths 

(UCLouvain, CRED & USAID, 2018). Earthquake is one of the most devastating natural 

disasters due to its unpredictable nature (Chen et al., 2007). The earthquake cannot be 

underestimated because the impact is severe, widespread, and the consequences frequently 

remain long-term effects on life and property. 

Several studies have investigated the adverse effect of the earthquake on human capital. 

These studies have examined its impact on health outcomes (Chen et al., 2007; Baez, De la 

Fuente & Santos, 2010), health outcomes, and education (Hermida 2010; Caruso & Miller, 

2015; Paudel & Ryu, 2018; Almond, 2006). Other studies have investigated its effect of in-

utero and early-life shocks and posit a long-lasting impact on education, health, and 

socioeconomic outcome at an older age (Weldeegzie, 2017; Lee, 2014; Maluccio et al., 2009; 

Maccini & Yang, 2009). The effects tend to be grave for individuals exposed to the earthquake 

during the prenatal period or within 2 years of birth (Wang, et al. 2017; Troche, 2011; Neelsen 

& Stratmann, 2011). Research on various disciplines establishes that the environmental 

condition of a child’s early life plays a significant role in assessing economic and health 
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conditions at old age. Barker (1992,1994) argues that the disruption of the fetal environment 

in utero is associated with chronic health outcomes at old age. We contribute to the above 

literature by investigating the effect of the earthquake on disability and education restricting 

our study to individuals exposed to earthquakes being either in-utero or in two years of life. 

There are different channels through which earthquakes can affect early life’s outcomes 

directly or indirectly. Earthquake incidence destroys a lot of properties including human lives 

leaving victims in deployable conditions most of which often resort to poor nutrition, dwelling 

in slums resulting in exposure to infectious disease. Physicians and epidemiological studies 

have associated many of the deteriorating conditions at later life to exposure to infectious 

diseases, famine, psychological and socioeconomic stress during in utero and in early years of 

life. For example, losing a parent can cause children both emotional and physical harm, and 

may increase vulnerability to future risk (Beegle, De Weerdt, & Dercon, 2006). Poor health in 

early-life and nutritional deficiency can have lifelong implications for health, education and 

labor market outcomes in adulthood (Currie & Vogl, 2013; Currie, 2009; Alderman, Hoddinott, 

& Kinsey, 2006; Silventoinen, 2003; Duflo, 2001; Lucas, Fewtrell, & Cole, 1999; Martorell, 

1999). Studies also show that maternal stress after earthquake affects child outcomes as stress 

alters blood flow to the uterus, and the fetal environment stimulates the tissue, cell and organ 

system of the fetus structural and functional changes, which results in long-term effects of the 

child born from stress-burden mothers (Moreno, et al.2010; Entringer, et al. 2011).  

This paper investigates the long-term effect of exposure to earthquake being either in-

utero or two years of life on human capital outcomes — disability and educational attainment 

employing difference in differences strategy. We compare the human capital outcomes across 

the subpopulations of those who were exposed to earthquake being either in-utero or two years 

of life using Myanmar census data. The results indicate that individuals who were exposed to 
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earthquake being either in-utero or two years of life have a higher probability of being disabled 

and less years of education. Moreover, affected individuals born in rural areas have a higher 

probability of disability than born in urban areas. Our findings suggest that those who were 

exposed to the earthquake in early childhood negatively impacted on human capital outcomes 

in the long run. 

The rest of the paper is structured as follows. An overview of the earthquakes briefly 

describes in Section 2. Section 3 illustrates the data using in this analysis. Section 4 constructs 

the identification strategy. Section 5 shows the empirical results and Section 6 present a 

discussion of the empirical finding and conclusion.  

1.2 Background of Earthquakes  

Myanmar has been plagued with a series of devastating earthquakes in some parts of the 

country. In this study, we analyze the effects of three different earthquakes that is Bago 

earthquake, Phyu earthquake, and Bagan earthquake. Below is a brief background of the 

earthquakes. 

1.2.1 Bago Earthquake  

The Pegu (Bago) earthquake occurred on May 5th, 1930 at 13:45:27 hours GMT on the southern 

part of Sagaing fault. The magnitude scale of the earthquake was at Ms 7.3. The epicenter of 

the earthquake was at (17.67° N, 96.54° E). The earthquake caused significant loss of life and 

buildings killing about 500 people in Bago and 50 people in Yangon. 

1.2.2 Pyu Earthquake  

Pyu earthquake occurred on the 4th December 1930 at 18:51:44 GMT, 1:22 A.M. (Myanmar 

Standard Time).  The magnitude scale of the earthquake was at Ms 7.3 (Engdahl & Villseñor, 

2002; NGDC 1972). The epicenter of the earthquake was at (17.97° N, 96.42° E). The 
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earthquake caused major destruction to buildings, masonry buildings, roads, severe buckling 

of the railway line, and killing 30 people (Aung, 2017).  

1.2.3 Bagan Earthquake  

Bagan earthquake occurred on 8th July 1975 at 6:34 pm local time (12:04:42 UTC) with a 

magnitude scale of Ms 7.0.  The epicenter of the earthquake was at (21.48° N, 94.70° E). The 

earthquake damaged many pagodas, temples, the historical-artistic landmark of Asia, and the 

center of the Burmese national culture. 

1.3 Data 

The analysis of this paper uses the 10% sample of the 2014 Myanmar Population and Housing 

Census (MPHC) conducted by Myanmar government with support from the United Nations 

Population Fund. The dataset contains a large range of information needed for our analysis and 

has individual-level variables on demographics: gender, marital status, disability, and 

educational attainment. The census also reports the information on birth’s place at the township 

level and place of residence which enables us to analyze earthquake effects on human capital 

such as types of disability and educational attainment.  

The 2014 MPHC presents that the total population of Myanmar was 51,486,253 persons 

in March 2014. Among them, 26,661,667 were females and 24,824,586 were males (DPM, 

2015). The total observation number of individual samples in this study is 4,791,185 samples 

because we use the 10% sample of the 2014 Myanmar Population and Housing Census data. 

In this study, we restrict the sample to individuals aged 25 years and above for our analysis of 

the long-term effect of the earthquake. We define affected township as the distance from the 

epicenter because we do not have the information about the Mercalli intensity scale (MM or 
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MMI) of the township level. We calculate distance from the epicenter using the latitude and 

longitude of the epicenters and place of birth townships.  

Table 1.1 provides descriptive statistics of the main variables used in this analysis. It 

provides outcome and control variables with the sample means respectively. Among types of 

disabilities, seeing was the most frequent with a mean percentage of 4 followed by walking 3 

percent. The mean of years of education is 6.69. For Marital status, married people are the 

majority in our sample with a mean of 73 percent, followed by singles. Other variables include 

age, gender, and grade/level of education completion and household characteristics. 
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Table 1.1: Summary Statistics 

  Obs Mean Std.Dev Min Max 
Types of Disability      

•      Seeing 2531524 0.04 0.2 0 1 
•      Hearing 2531524 0.02 0.15 0 1 
•      Remembering 2531524 0.02 0.15 0 1 
•      Walking 2531524 0.03 0.17 0 1 

Years of education  2531524 6.69 3.64 0 18 
Age of respondent  2531524 44.61 14.37 25 93 
Gender (Male==1) 2531524 0.45 0.5 0 1 
Marital Status      

•      Single 2531524 0.15 0.36 0 1 
•      Married 2531524 0.73 0.44 0 1 
•      Widowed 2531524 0.09 0.29 0 1 
•      Divorced 2531524 0.02 0.14 0 1 
•      Renounced 2531524 0 0.02 0 1 

Educational Level       

•      None 2531524 0.17 0.37 0 1 
•      Grade 1 2531524 0.01 0.11 0 1 
•      Grade 2 2531524 0.04 0.19 0 1 
•      Grade 3 2531524 0.07 0.26 0 1 
•      Grade 4 2531524 0.12 0.32 0 1 
•      Grade 5 2531524 0.23 0.42 0 1 
•      Grade 6 2531524 0.05 0.22 0 1 
•      Grade 7 2531524 0.04 0.19 0 1 
•      Grade 8 2531524 0.04 0.2 0 1 
•      Grade 9 2531524 0.05 0.21 0 1 
•      Grade 10 2531524 0.05 0.21 0 1 
•      Grade 11 2531524 0.05 0.22 0 1 
•      College 2531524 0.01 0.11 0 1 
•      Vocational training 2531524 0 0.04 0 1 
•      Undergraduate diploma 2531524 0 0.05 0 1 
•      Graduate 2531524 0.07 0.25 0 1 
•      Postgraduate diploma 2531524 0 0.04 0 1 
•      Master 2531524 0 0.04 0 1 
•      Ph.D. 2531524 0 0.02 0 1 

Household Characteristics      

•      Ownership of housing 2531524 0.87 0.34 0 1 
•      Type of housing unit 2531524 0.99 0.11 0 1 
•      Electricity access 2531524 0.36 0.48 0 1 
•      Having a toilet 2531524 0.88 0.33 0 1 
•      Mobile phone access 2531524 0.38 0.49 0 1 

Place of residence (Urban==1) 2531524 0.278 0.448 0 1 
Source: The 10 % samples of the 2014 Myanmar Population and Housing Census 
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1.4 Identification Strategy 

1.4.1 Model Specification 

We estimate the long-term effect of the three incidences of earthquakes exposure in early life 

on human capital outcomes using the difference in differences strategy (DID). We compare the 

human capital outcomes across the subpopulations of those who were exposed to earthquake 

during their early life and those who did not. Following the in-utero and early-life hypothesis, 

we assume that individuals who were exposed to the earthquake either being in-utero or two 

years of life will be negatively affected either in their health status or education in later life. To 

identify the affected cohorts (hereafter Cohort), we calculated the ages of those who were 

exposed to the earthquake being either in-utero or two years of life at the time of the earthquake 

using the 2014 Myanmar Population Census. Although we have a distance of over 1000km, 

we define severely affected township (hereafter Treated) if the distance of the township of birth 

is 0 to 150 km from epicenter and less affected township (hereafter Control) as the distance of 

birth township is 151 to 400 km from epicenter relying on a measure by Mileti & Fitzpatrick 

(2019) and Agrawal (2001).1 We also use a log of the entire distance of the affected township 

as a treatment variable in a separate analysis. We estimate the long-term effects of the 

earthquake on human capital using the following equation:  

𝑌!"# =	𝛽$ +	𝛽%𝐶𝑜ℎ𝑜𝑟𝑡!# + 𝛽&𝑇𝑟𝑒𝑎𝑡𝑒𝑑" + 𝛽'/𝐶𝑜ℎ𝑜𝑟𝑡!# ∗ 𝑇𝑟𝑒𝑎𝑡𝑒𝑑"1 + 𝑋!"#( 𝛼 + 𝑎) + ℰ!"#, (1) 

Where 𝑌!"# represents the outcomes of interest of individual i who was born in township 

j and cohort t. The set of outcomes considered in the paper consists of the types of disability (a 

 
1 Mileti & Fitzpatrick (2019) report that a magnitude of 7 to 8 earthquakes can severely impact a distance of 50 to 100 km 

long. Agrawal (2001) several reports that magnitude 7 earthquakes can be felt up to 400 km long and can severely cause 

damage up to a distance of 80 km. 
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binary indicator of difficulties with seeing, hearing, remembering, or walking) and years of 

education. 𝐶𝑜ℎ𝑜𝑟𝑡!# is a dummy variable of the affected cohorts which equals one for the 

individuals who were exposed to the earthquake being either in-utero or in two years of life. 

𝑇𝑟𝑒𝑎𝑡𝑒𝑑" is a dummy variable of born in affected townships, which equals one if the distance 

of the township of birth is 0 to 150 km from the epicenter, and zero if the distance of the 

township of birth is 151 to 400 km from the epicenter. 𝑋!"#(  represents a set of individual 

characteristics such as age dummies, sex, marital status, educational attainment, and household 

characteristics such as ownership of housing, types of housing units, electricity access, having 

a toilet, and mobile phone access and urban area dummy. Besides, we include region fixed 

effects. ℰ!"# is the error term cluster at township level2.  

We also perform the same experiments to investigate the heterogeneous impact of the 

earthquake by gender and place of residence in order to provide a more detailed picture. The 

triple DID estimate of exposure to the earthquake is estimated by the following equation: 

	𝑌!"# =	𝛽$ +	𝛽%𝐶!# + 𝛽&𝑇" + 𝛽'𝑀!"# 	+ 𝛽*𝑅!"# +	𝛽+	(𝐶!# ∗ 𝑇") +	𝛽,	(	𝐶!# ∗ 𝑀!"#) +	𝛽-	(𝑇" ∗

													𝑀!"#) +	𝛽.	(𝐶!# ∗ 𝑅!"#) +		𝛽/	(𝑇" ∗ 𝑅!"#) + 	𝛽*/𝐶!# ∗ 	𝑇" ∗ 𝑀!"#	1 + 𝛽+/𝐶!# ∗ 𝑇" ∗

													𝑅!"#	1 +	𝑋!"#( 𝛼 +	𝑎) +	ℰ!"#,          (2) 

Where, 𝑌!"# represents the outcomes of interest for individual i who was born in 

township j and cohort t. The set of outcomes considered in the paper consists of the disability 

type (a binary indicator of difficulties with Seeing, Hearing, Remembering, or Walking) and 

educational attainment (Years of Education). 𝐶!# is a dummy variable indicating affected 

cohorts which equals one for the individuals who were exposed to the earthquake being either 

 
2 There are (409) townships in our data set and we clustered standard errors at this level to allow the correlation within the 
township. 
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in-utero or in two years of life. 𝑇" is a dummy variable of born in affected townships, which 

equals one if the distance to township of birth is 0 to 150 km from epicenter and equals zero if 

the distance to township of birth is 151 to 400 km from the epicenter. 𝑀!"# is a dummy variable 

which equals one for males, and zero equals for females. 𝑅!"# is a dummy variable which equals 

one for born in rural, and zero equals for born in urban areas.		𝑋!"#(  represents a set of individual 

characteristics such as age dummies, sex, marital status, educational attainment, and household 

characteristics such as ownership of housing, types of housing units, electricity access, having 

a toilet, and mobile phone access and urban area dummy. Besides, we include region fixed 

effects. ℰ!"# is the error term cluster at township level3. 

1.5. Empirical Results  

1.5.1 Main Findings 

Table 1.2, 1.3, and 1.4 show the results of our main specification for the three incidences of 

earthquakes exposure in early life on types of disability and years of education. Columns (1-4) 

estimate the impact of the earthquake on types of disability and column (5) estimates the impact 

of the earthquake on years of education. We control individual characteristics and household 

characteristics such as age dummies, sex, marital status, educational level, ownership of 

housing, types of housing units, electricity access, having a toilet and mobile phone access, and 

urban areas dummy in all columns. 

We find that Bago earthquake has a positive impact on the likelihood of being disabled 

and a negative impact on years of education in Table 1.2. The results show that affected cohorts 

who were exposed to Bago earthquake have difficulties in seeing, hearing, remembering, and 

 
3 There are (409) townships in our data set and we clustered standard errors at this level to allow the correlation 
within the township. 
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walking by 3.3 percent, 3.7 percent, 3.3 percent, and 3.9 percent respectively. The results also 

show that cohorts who were exposed to earthquake has a significant reduction in years of 

education by 0.18 years. 

Table (1.3) show that Phyu earthquake has a positive impact on the likelihood of being 

disabled and a negative impact on years of education. The results show that affected cohorts 

who were exposed to Phyu earthquake have difficulties in seeing, hearing, remembering, and 

walking by 2.4 percent, 3.0 percent, 2.2 percent, and 2.1 percent respectively. We find that 

there is a significant decrease in the years of education by 0.17 years among cohorts who were 

exposed to an earthquake. 

Table 1.2: Effects of Bago Earthquake on Types of Disability and Years of Education 

 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.234*** 0.206*** 0.168*** 0.250*** -2.404***  
(0.015) (0.014) (0.013) (0.015) (0.115) 

Treated 0.007* 0.001 0.004** 0.004* 0.141***  
(0.004) (0.001) (0.002) (0.002) (0.006) 

Treated*Cohort 0.033** 0.037*** 0.033*** 0.039*** -0.183*  
(0.014) (0.013) (0.012) (0.013) (0.100)  

     
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1562614 1562614 1562614 1562614 1562614 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are types of disability and years of education specified in the heading of the table. We 
define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who were 
exposed to the earthquake being either in-utero or in two years of life. The affected township is a dummy variable of born in 
affected townships, which equals one for the distance of born in townships 0 to 150 km from the epicenter, and zero equals 
for the distance of townships from 151 to 400 km from the epicenter. “Individual controls” include sex, age, marital status, 
education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having a 
toilet and mobile phone access, and urban area dummy. 
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Table 1.3: Effects of Phyu Earthquake on Types of Disability and Years of Education 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.240*** 0.210*** 0.174*** 0.262*** -2.400***  
(0.013) (0.013) (0.012) (0.014) (0.105) 

Treated 0.001 0.001 0.001 0.001 0.089***  
(0.004) (0.001) (0.002) (0.002) (0.005) 

Treated*Cohort 0.024* 0.030** 0.022* 0.021* -0.177**  
(0.013) (0.012) (0.012) (0.013) (0.090)  

     
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1666968 1666968 1666968 1666968 1666968 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the types of disability and years of education specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
were exposed to the earthquake being either in-utero or in two years of life. The affected township is a dummy variable of 
born in affected townships, which equals one for the distance of born in townships 0 to 150 km from the epicenter, and zero 
equals for the distance of townships from 151 to 400 km from the epicenter. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
 

Table 1.4: Effects of Bagan Earthquake on Types of Disability and Years of Education 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.009*** 0.003*** 0.006*** 0.006*** -0.398***  
(0.001) (0.001) (0.001) (0.001) (0.052) 

Treated -0.005* -0.005*** -0.006*** -0.003* 0.075  
(0.002) (0.001) (0.002) (0.001) (0.132) 

Treated*Cohort 0.003* 0.004*** 0.003** 0.003** 0.056  
(0.002) (0.001) (0.001) (0.001) (0.036)       

Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1390959 1390959 1390959 1390959 1390959 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are types of disability and years of education specified in the heading of the table. We 
define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who were 
exposed to the earthquake being either in-utero or in two years of life. The affected township is a dummy variable of born in 
affected townships, which equals one for the distance of born in townships 0 to 150 km from the epicenter, and zero equals 
for the distance of townships from 151 to 400 km from the epicenter. “Individual controls” include sex, age, marital status, 
education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having a 
toilet and mobile phone access, and urban area dummy. 
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Table (1.4) show that Bagan earthquake has a positive impact on the likelihood of being 

disabled and a negative impact on years of education. The results show that affected cohorts 

who were exposed to Bagan earthquake have difficulties in seeing, hearing, remembering, and 

walking by 0.3 percent, 0.4 percent, 0.3 percent, and 0.3 percent respectively. We find that 

there is a positive impact on the years of education, but it is statistically insignificant. 

1.5.2 Falsification Test 

We perform a falsification test to ensure our findings are valid. Our concern is that the effects 

of earthquakes on types of disability and years of education may reflect differential trends 

between treated and control at the baseline. To perform this test, we use older cohorts as 

pseudo-post and using the same model from Equation (1).  

We test whether disability and years of education of the older cohorts show statistically 

significant. The placebo test is expected to provide us statistically insignificant estimates. As 

we expected, Table 1.5, 1.6, and 1.7 show that the impact is statistically insignificant 

indicating that there was no differential trend on disability and years of education for cohorts 

not exposed to the earthquake, thus confirming the validity of our results, except for years of 

education of Bagan earthquake. The years of education of Bagan earthquake show positive 

significant but this does not bias our results since we did not find the earthquake significant 

impact on years of education in our main results. 
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Table 1.5: Falsification Test of Bago Earthquake 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5)    
Cohort 0.288*** 0.249*** 0.214*** 0.302*** -1.455***  

(0.024) (0.024) (0.022) (0.023) (0.202) 
Treated 0.007* 0.001 0.004** 0.004* 0.452***  

(0.004) (0.001) (0.002) (0.002) (0.006) 
Treated*Cohort 0.012 0.023 0.017 0.025 -0.111  

(0.022) (0.023) (0.019) (0.022) (0.170)  
     

Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1562614 1562614 1562614 1562614 1562614 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
 
 
 

Table 1.6: Falsification Test of Phyu Earthquake 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.284*** 0.258*** 0.216*** 0.303*** -1.754***  
(0.021) (0.021) (0.019) (0.019) (0.106) 

Treated 0.001 0.001 0.001 0.001 0.132**  
(0.004) (0.001) (0.002) (0.002) (0.063) 

Treated*Cohort 0.015 0.020 0.013 0.030 -0.135  
(0.020) (0.021) (0.018) (0.020) (0.138)       

Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1666968 1666968 1666968 1666968 1666968 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
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Table 1.7: Falsification Test of Bagan Earthquake 
 

 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.029*** -0.013*** 0.009*** 0.012*** -0.883***  
(0.002) (0.001) (0.001) (0.001) (0.036) 

Treated -0.004* -0.004*** -0.006*** -0.002* 0.017  
(0.002) (0.002) (0.002) (0.001) (0.059) 

Treated*Cohort -0.002 0.001 0.001 0.000 0.118***  
(0.001) (0.001) (0.001) (0.001) (0.027)      

 
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1390959 1390959 1390959 1390959 1390959 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
 
 

1.5.3 Robustness Checks 

We also use a different subsample of severely affected townships and non-affected 

townships for our second robustness checks using Equation (1). Tables 1.8, 1.9, and 1.10   

report the estimate of the effect on disability and years of education using severely affected 

townships and non-affected townships. Our findings are consistent with our baseline estimates 

both in sign and significance level confirming the validity of our results.  
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Table 1.8: Robustness Check of Bago Earthquake  
(Severely and Non-affected Townships) 

 Disability  Years of 

 Seeing Hearing Remembering Walking Education 
  (1) (2) (3) (4) (5) 

   
Cohort 0.240*** 0.218*** 0.183*** 0.258*** -3.139***  

(0.005) (0.003) (0.004) (0.004) (0.102) 
Treated 0.013*** 0.002*** 0.006*** 0.007*** 0.092***  

(0.000) (0.000) (0.000) (0.000) (0.005) 
Treated*Cohort 0.029*** 0.031*** 0.016*** 0.030*** -0.146*  

(0.004) (0.003) (0.003) (0.003) (0.088)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1877871 1877871 1877871 1877871 1877871 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
were exposed to the earthquake being either in-utero or in two years of life. Treated is a dummy variable of born in severely 
earthquake-affected townships and born in less earthquake-affected townships. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
 
 

Table 1.9: Robustness Check of Phyu Earthquake  

(Severely and Non-affected Townships) 

 Disability  Years of 

 Seeing Hearing Remembering Walking Education 
  (1) (2) (3) (4) (5) 

   
Cohort 0.244*** 0.221*** 0.188*** 0.262*** -3.122***  

(0.005) (0.004) (0.004) (0.004) (0.112) 
Treated 0.010*** 0.002*** 0.004*** 0.005*** 0.099***  

(0.000) (0.000) (0.000) (0.000) (0.006) 
Treated*Cohort 0.026*** 0.030*** 0.011*** 0.025*** -0.205**  

(0.004) (0.003) (0.003) (0.003) (0.096)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1716695 1716695 1716695 1716695 1716695 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
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were exposed to the earthquake being either in-utero or in two years of life. Treated is a dummy variable of born in severely 
earthquake-affected townships and born in less earthquake-affected townships. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
 
 

Table 1.10: Robustness Check of Bagan Earthquake  

(Severely and Non-affected Townships) 

 Disability  Years of 

 Seeing Hearing Remembering Walking Education 
  (1) (2) (3) (4) (5) 

   
Cohort 0.014*** 0.004*** 0.006*** 0.005*** -0.002  

(0.002) (0.001) (0.001) (0.001) (0.016) 
Treated -0.021*** -0.007*** -0.012*** -0.012*** -0.092  

(0.003) (0.001) (0.002) (0.002) (0.056) 
Treated*Cohort 0.009*** 0.004*** 0.005*** 0.007*** 0.070  

(0.002) (0.001) (0.001) (0.001) (0.027)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1832174 1832174 1832174 1832174 1832174 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
were exposed to the earthquake being either in-utero or in two years of life. Treated is a dummy variable of born in severely 
earthquake-affected townships and born in less earthquake-affected townships. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
 
 
 

1.5.4 Analysis using Natural Logarithm of Distance to Earthquake Epicenter 

 We also estimate the impact of the earthquake on human capital outcomes using log of 

entire distance to earthquake epicenter as the treatment variable. The estimated results of the 

earthquakes are reported in Table 1.11, 1.12, and 1.13. 

 Table 1.11 shows the results of the impact of the Bago earthquake on disability and 

years of education using log of distance to earthquake epicenter as the treatment variable. The 

results show that distance to the epicenter increases, disability reduces a significant reduction 

in hearing and walking. These findings suggest that individuals who were being either in-utero 
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or two years of life and resides farther than the epicenter are less likely to be disabled. The 

impact of the Phyu and Bagan earthquakes on disability and years of education using log of 

distance to earthquake epicenter as the treatment variable are reported in Table 1.12 and Table 

1.13. The findings in Phyu earthquake are similar to Bago earthquake, however, the pagan 

earthquake shows a significant reduction in all types of disability and years of education.  

Table 1.11: Effects of Bago Earthquake Using Log Distance to Earthquake Epicenter  

 Disability  Years of 

 Seeing Hearing Remembering Walking Education 
  (1) (2) (3) (4) (5) 

   
Cohort 0.296*** 0.294*** 0.222*** 0.340*** -3.776***  

(0.041) (0.034) (0.036) (0.037) (0.313) 
Log of Distance -0.004*** -0.000 -0.002** -0.003*** -0.183***  

(0.002) (0.001) (0.001) (0.001) (0.058) 
Interaction Term -0.007 -0.012* -0.006 -0.012* 0.052  

(0.007) (0.006) (0.007) (0.007) (0.057)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 2467420 2467420 2467420 2467420 2467420 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
were exposed to the earthquake being either in-utero or in two years of life. Log of distance is the continuous treatment variable 
which is a log of the distance of born in townships to the earthquake epicenter. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
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Table 1.12: Effects of Phyu Earthquake Using Log Distance to Earthquake Epicenter 

 Disability  Years of 

 Seeing Hearing Remembering Walking Education 
  (1) (2) (3) (4) (5) 

   

Cohort 0.301*** 0.302*** 0.217*** 0.342*** -3.829*** 
 

(0.043) (0.037) (0.038) (0.038) (0.341) 
Treated -0.004** -0.000 -0.002** -0.003*** -0.225*** 
 

(0.002) (0.001) (0.001) (0.001) (0.062) 
Interaction Term -0.008 -0.013** -0.005 -0.013* 0.061 
 

(0.008) (0.007) (0.007) (0.007) (0.063) 
 

     

Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 2467420 2467420 2467420 2467420 2467420 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
were exposed to the earthquake being either in-utero or in two years of life. Log of distance is the continuous treatment variable 
which is a log of the distance of born in townships to the earthquake epicenter. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
 
 
Table 1.13: Effects of Bagan Earthquake Using Log Distance to Earthquake Epicenter  

 Disability  Years of 

 Seeing Hearing Remembering Walking Education 
  (1) (2) (3) (4) (5) 

   
Cohort 0.042*** 0.023*** 0.028*** 0.030*** 0.124  

(0.007) (0.003) (0.004) (0.005) (0.128) 
Treated 0.011*** 0.004*** 0.007*** 0.006*** -0.030  

(0.002) (0.001) (0.001) (0.001) (0.050) 
Interaction Term -0.005*** -0.003*** -0.003*** -0.004*** -0.131***  

(0.001) (0.001) (0.001) (0.001) (0.022)  
     

Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 2467420 2467420 2467420 2467420 2467420 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
We define the affected cohort is a dummy variable of years of the affected cohort which equals one for the individuals who 
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were exposed to the earthquake being either in-utero or in two years of life. Log of distance is the continuous treatment variable 
which is a log of the distance of born in townships to the earthquake epicenter. “Individual controls” include sex, age, marital 
status, education level, and “Household characteristics” ownership of housing, types of housing units, electricity access, having 
a toilet and mobile phone access, and urban area dummy. 
 

1.5.5 Heterogeneous Effect of the Earthquakes  

The effects of earthquake by gender and place of residence can vary. For instance, Paudel & 

Ryu (2018) show that the effect of earthquake on educational outcomes impacted greatly on 

females. We investigate the heterogeneous impact of the earthquake by gender and place of 

residence. The estimates from Equation (2) of Bago earthquake are reported in Table 1.14 

and Table 1.15, show heterogeneous impact of the Bago earthquake on disability and years of 

education by gender and place of residence. Table 1.14 results show that there is no differential 

impact between affected males and affected females. 

Table 1.15 show heterogeneous impact of the Bago earthquake on disability and years 

of education by place of residence. The result shows that the Bago earthquake-affected cohorts 

born in rural areas have a positive significant effect on disability and positive but insignificant 

effect on years of education. The result reveals that the affected cohorts born in rural areas have 

more likely to be disabled than affected cohorts born in urban areas. 

The estimates from Equation (2) of Phyu earthquake and Bagan earthquakes are 

reported in Appendix Table A.1-A.4. The results show heterogeneous impact of the 

earthquakes on disability and educational attainment by gender and place of residence. The 

findings show that the affected cohorts born in rural areas have a higher probability of disability 

than born in urban areas. 
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Table 1.14: Triple DID: Heterogeneity by Gender (Bago Earthquake) 
 

 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.244*** 0.207*** 0.178*** 0.265*** -2.661***  
(0.016) (0.016) (0.014) (0.016) (0.136) 

Treated 0.007* 0.001 0.004** 0.004* 0.069  
(0.004) (0.001) (0.002) (0.002) (0.066) 

Male 0.001 0.002*** 0.003*** 0.004*** 0.499***  
(0.001) (0.001) (0.001) (0.001) (0.052) 

Cohort* Treated 0.033** 0.034** 0.024* 0.040*** -0.155 
 (0.016) (0.015) (0.014) (0.015) (0.159) 
Cohort*Male -0.028* -0.003 -0.029* -0.042** 0.586*** 
 (0.016) (0.019) (0.017) (0.019) (0.167) 
Treated *Male -0.001 -0.000 -0.001 -0.001 -0.069 
 (0.001) (0.001) (0.001) (0.001) (0.059) 
Cohort*Treated *Male 0.003 0.006 0.025 0.000 0.106 
 (0.021) (0.023) (0.021) (0.022) (0.207)  

     
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1562614 1562614 1562614 1562614 1562614 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
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Table 1.15: Triple DID: Heterogeneity by Place of Residence (Bago Earthquake) 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.209*** 0.197*** 0.147*** 0.263*** -3.347***  
(0.026) (0.024) (0.018) (0.022) (0.180) 

Treated -0.007** -0.001* 0.000 -0.000 0.124  
(0.003) (0.001) (0.001) (0.001) (0.103) 

Rural -0.008*** -0.001 -0.002 -0.003** -1.426***  
(0.002) (0.001) (0.001) (0.001) (0.072) 

Cohort* Treated -0.019 -0.017 -0.004 -0.037* -0.119 
 (0.025) (0.023) (0.017) (0.021) (0.186) 
Cohort*Rural 0.036 0.015 0.030 -0.013 1.434*** 
 (0.022) (0.022) (0.019) (0.021) (0.173) 
Treated *Rural 0.018*** 0.004*** 0.005** 0.005** -0.127 
 (0.004) (0.001) (0.002) (0.002) (0.108) 
Cohort*Treated *Rural 0.081*** 0.080*** 0.059*** 0.108*** 0.189 
 (0.027) (0.025) (0.022) (0.025) (0.201)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1562614 1562614 1562614 1562614 1562614 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
 
 

1.6 Discussion and Conclusion  

This paper investigates the long-term effect of the earthquake exposure being either in-utero or 

two years of life on human capital outcomes using the difference in difference approach. Our 

results indicate that earthquakes increase the probability of being disabled in the long term after 

earthquake exposure and as well reduces the years of education.  

Our results on disability are consistent with previous findings by Caruso and Miller 

(2015), who note an increase in the likelihood of being disabled of 0.001 among cohorts who 

experienced the 1970 Ancash earthquake in their early life. However, in terms of the 
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magnitude, the coefficients of our estimates are bigger, indicating that the effect of the 

earthquake in our study is more pronounced. The negative impact of the Bago earthquake and 

Phyu earthquake on years of education are consistent with previous findings by Caruso and 

Miller (2015), who report an average reduction of 0.49 to 0.70 years of education among 

cohorts who experienced the 1970 Ancash earthquake in their early life.  

Our results on years of education are also consistent with previous findings by Paudel 

and Ryu (2018), who show an average reduction of 0.8 years of education among cohorts who 

experienced Nepal’s earthquake in their early life. However, our coefficients are smaller for 

years of education compare to previous studies. These findings answer our research question 

on the long-term effect of exposure to earthquake being either in-utero or two years of life on 

disability and years of education. We have no doubt that our results are valid given that our 

falsification test shows no differential trend in the outcome variables of interest. Other 

robustness checks also support our findings.   

We also show the impact of the earthquakes on disability and years of education using 

log of entire distance to earthquake epicenter as the treatment variable. The results show that 

as the distance to the epicenter increases, the probability of being disabled reduces. These 

findings suggest that individuals who were being either in-utero or two years of life and resides 

farther than the epicenters of the earthquakes are less likely to be disabled. The results of the 

heterogeneity of the earthquake by gender and place of the resident show that there is no 

differential impact between effected-males and effected-females. Affected cohorts born in rural 

areas are more likely to have disabilities than affected cohort born in urban areas. 

Two of the earthquakes in our study, Bago earthquake and Phyu earthquake occurred 

in the same year, however in different months. There might be an overlapping impact of both 

earthquakes since we use the same birth cohorts for our analysis and the distance from the 
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epicenter of the Bago earthquake to the Phyu earthquake is 128km, which is within the 150km 

use for our analysis. Our data set does not contain date and month of birth thus we could not 

estimate the impact using the exact age of the affected cohorts. Since the two earthquakes 

occurred in the same year but different months, we could isolate the affected cohorts with their 

specific ages using the date and month of birth, which may assist us to solve the issue of 

overlapping.   

 To the best of our knowledge, this is the only study that investigates the effect of 

earthquakes on various types of disability which gives a new insight to policymakers on the 

types of disability which earthquakes affected cohorts suffer at old age, thus a key contribution 

to literature. Previous studies only examine earthquake effect on aggregate disability making 

it difficult to identify the types of disability earthquake cohorts experienced in the long run.     

We have shown in this study that earthquakes can have a long-term adverse effect on 

cohorts exposed to being either in-utero and two years of life. We, therefore, recommend 

regular screening of persons exposed to earthquakes for early identification, treatment, and 

setting-up rehabilitation centers for persons with disabilities. Social workers should work with 

the families of affected cohorts to help them understand the nature of the disability and its 

outcome, to make the necessary adjustments to assist the disabled person deal with personal 

and interpersonal concerns related to the disability. We also recommend free provision of 

disability aids by the government for persons exposed to earthquake diagnosed with disability. 

Concerning years of education, we encourage a strong policy design to tackle the decline in 

years of education among persons affected. 
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APPENDIX A 

Table A.1: Triple DID: Heterogeneity by Gender (Phyu Earthquake) 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.253*** 0.212*** 0.183*** 0.276*** -2.672***  
(0.014) (0.015) (0.013) (0.015) (0.133) 

Treated 0.001 0.001 0.001 0.001 0.119*  
(0.004) (0.001) (0.002) (0.002) (0.065) 

Male 0.000 0.001*** 0.002*** 0.003*** 0.502***  
(0.001) (0.000) (0.000) (0.000) (0.043) 

Cohort* Treated 0.019 0.023 0.014 0.022 -0.167 
 (0.015) (0.014) (0.013) (0.014) (0.149) 
Cohort*Male -0.035** -0.004 -0.024 -0.039** 0.667*** 
 (0.014) (0.017) (0.015) (0.015) (0.155) 
Treated *Male -0.001 0.000 -0.000 -0.000 -0.064 
 (0.001) (0.001) (0.001) (0.001) (0.052) 
Cohort*Treated *Male 0.016 0.020 0.023 0.000 0.003 
 (0.020) (0.021) (0.019) (0.020) (0.195)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1666968 1666968 1666968 1666968 1666968 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and "Household characteristics" ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
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Table A.2: Triple DID: Heterogeneity by Place of Residence (Phyu Earthquake) 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.198*** 0.189*** 0.154*** 0.245*** -3.240***  
(0.020) (0.020) (0.015) (0.018) (0.143) 

Treated -0.006** -0.001 -0.000 -0.001 0.233**  
(0.003) (0.001) (0.001) (0.001) (0.103) 

Rural -0.002 -0.000 -0.000 -0.001 -1.379***  
(0.003) (0.001) (0.001) (0.001) (0.066) 

Cohort* Treated -0.004 -0.012 -0.019 -0.018 -0.283* 
 (0.020) (0.020) (0.014) (0.018) (0.157) 
Cohort*Rural 0.058*** 0.030* 0.029* 0.025 1.361*** 
 (0.018) (0.018) (0.017) (0.020) (0.136) 
Treated *Rural 0.009** 0.002* 0.002 0.002      -0.209* 
 (0.004) (0.001) (0.002) (0.002) (0.107) 
Cohort*Treated *Rural 0.047* 0.063*** 0.062*** 0.059** 0.256 
 (0.024) (0.022) (0.021) (0.025) (0.176)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1666968 1666968 1666968 1666968 1666968 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
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Table A.3: Triple DID: Heterogeneity by Gender (Bagan Earthquake) 

 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.011*** 0.003*** 0.005*** 0.005*** -0.750***  
(0.001) (0.001) (0.001) (0.001) (0.045) 

Treated -0.005** -0.005*** -0.007*** -0.003** -0.011  
(0.003) (0.001) (0.002) (0.002) (0.066) 

Male 0.001 0.001*** 0.001** 0.002*** 0.351***  
(0.001) (0.000) (0.000) (0.000) (0.044) 

Cohort* Treated 0.003 0.005*** 0.003** 0.002 0.022 
 (0.002) (0.001) (0.001) (0.002) (0.038) 
Cohort*Male -0.002** 0.000 0.002** 0.002* -0.294*** 
 (0.001) (0.001) (0.001) (0.001) (0.029) 
Treated *Male 0.001 0.000 0.002*** 0.002*** 0.302*** 
 (0.001) (0.001) (0.001) (0.001) (0.052) 
Cohort*Treated *Male 0.001 -0.001 -0.001 0.001 0.134*** 
 (0.001) (0.001) (0.001) (0.001) (0.047)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1390959 1390959 1390959 1390959 1390959 

Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
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Table A.4: Triple DID: Heterogeneity by Place of Residence (Bagan Earthquake) 
 Disability  Years of 
 Seeing Hearing Remembering Walking Education 

  (1) (2) (3) (4) (5) 
   

Cohort 0.014*** 0.009*** 0.011*** 0.010*** -0.640***  
(0.002) (0.001) (0.001) (0.001) (0.053) 

Treated -0.004 -0.002*** -0.002** -0.001 -0.211**  
(0.003) (0.001) (0.001) (0.001) (0.091) 

Rural 0.003* 0.004*** 0.003*** 0.002** -1.646***  
(0.002) (0.001) (0.001) (0.001) (0.067) 

Cohort* Treated 0.003 0.002* 0.002 0.001 0.058 
 (0.002) (0.001) (0.001) (0.001) (0.065) 
Cohort*Rural -0.006*** -0.007*** -0.006*** -0.005*** -0.093** 
 (0.001) (0.001) (0.001) (0.001) (0.046) 
Treated *Rural -0.002 -0.003** -0.005*** -0.002 0.307*** 
 (0.003) (0.001) (0.002) (0.002) (0.098) 
Cohort*Treated *Rural 0.000 0.003** 0.001 0.001 0.057 
 (0.002) (0.001) (0.002) (0.002) (0.068)       
Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 1390959 1390959 1390959 1390959 1390959 

 
Notes: Linear probability models. Robust standard errors are clustered at a township level in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01.  The dependent variables are the disability type and educational attainment specified in the heading of the table. 
“Individual controls” include sex, age, marital status, education level, and “Household characteristics” ownership of housing, 
types of housing units, electricity access, having a toilet and mobile phone access, and urban area dummy. 
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CHAPTER 2 

THE EFFECTS OF NATURAL DISASTER ON HOUSEHOLD 

EXPENDITURES AND CROP PRODUCTION: A CASE STUDY ON 

CYCLONE NARGIS AFFECTED REGION IN MYANMAR 

 

2.1 Introduction  

Over the past few years in Myanmar, the number of natural disasters has increased as well as 

its severity. Different types of disasters such as earthquakes, floods, landslides, cyclones, and 

drought occur frequently in Myanmar. Several researches have confirmed that natural disasters 

have increased and adversely correlates with several dimensions of human life such as human 

resources, economies, and poverty, especially in developing countries (Linnerooth-Bayer & 

Mechler, 2008; Moench, Mechler & Stapleton, 2007; Guha-Sapir, Hargitt & Hoyois, 

2004). Since 1950s, economic losses owing to natural disasters have risen to 14-folds, which 

is US$ 67 billion per year (Guha-Sapir et al., 2004). Linnerooth-Bayer and Mechler (2008) 

report that more than 95 percent of death by cause of natural disasters occurred in developing 

countries in 1980–2004, with economic losses totaling USD 54 billion annually.  

Several studies have investigated the adverse impact of natural disasters on household 

expenditure and income. These studies show a negative association between natural disasters 

and household income and expenditure (Arouri, Nguyen & Youssef, 2015; Sulistyaningrum, 

2015; Bui et al., 2014; Mottaleb et al., 2013; Thomas et al., 2010; Masozera, Bailey, & 

Kerchner, 2007; Dercon, 2004). However, much evidence is still needed for policymakers to 

better understand the devastating effect of natural disasters for appropriate policy designs 
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towards confronting a similar future occurrence. Our study contributes to these literatures on 

natural disasters and household income and expenditure. 

Globally, billions of households rely on farming for jobs and income, however, 

negative income shocks due to crop failure are becoming almost daily phenomenon among 

farmers (Zeigler & Barclay, 2008; Khush, 2004). Weather-related natural disasters can bring 

significant negative income shocks to farmers, as crops harvested, and income significantly 

corresponds to weather conditions. For instance, the estimated annual loss in rice production 

is more than 4 million tons in India and Bangladesh alone due to seasonal floods (IRRI, 2010). 

Natural disasters can result in a 100 percent yield loss in extreme cases. Households in 

Bangladesh in fully flooded villages lost about 90 percent of their crops, cattle, and poultry 

during the 1994 flood (Khandker, 2007). Some research explores the effect of a disaster-related 

crop shock on household consumption and expenditure as millions of households around the 

world rely on agriculture for jobs and earnings. These researchers note that in the event of a 

crop failure, households were unable to smooth their consumption, thus they were more likely 

to cut their expenditure (Cameron & Worswick, 2001; Kochar, 1999). Negative income shocks 

lead to lower expenditure on health and education, particularly households in developing 

countries (Sawada and Lokshin, 2009; Duryea et al., 2007; Benson and Clay, 2004).  

This paper investigates the effect of the cyclone Nargis on household expenditure and 

crop production in the Ayeyarwady delta region of Myanmar, using the Myanmar Integrated 

Household Living Conditions Assessment Survey and applying difference-in-difference (DID) 

strategy. We compare household expenditure and crop harvested across the subsamples 

between households in the severely cyclone-affected townships and less cyclone-affected 

townships.   
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The results show that the cyclone significantly reduces cropland, the quantity of crops 

harvested, monthly non-food expenditure, and health expenditure by 35.0 percent, 33.2 

percent, 10.7 percent, and 17.8 percent respectively. The cyclone increases the quantity of food 

bought as well as monthly food expenditure by 10.2 percent and 18.2 percent respectively. We 

estimate the quantity of food bought to determine what happened to the rising food expenditure. 

Our findings suggest that the cyclone has a negative impact on crop production and household 

expenditure. One possible reason could the reduction in cropland which led to reduce quantity 

crops harvested as a result of the cyclone. As a result of the reduced crops of harvested, 

households had to channel their income on food for survival thus increased in food expenditure 

with resultant reduction in non-food expenditure.  

The remainder of the paper is organized as follows. Section 2 briefly describes the 

Cyclone Nargis ad study area. Section 3 presents the data sources and characteristics of sample 

households. Section 4 describes the identification strategy. Section 5 presents the empirical 

results and Section 6 presents discussions and conclusion of the paper.  

2.2 Background 

Cyclone Nargis was an extremely damaging and the deadliest natural disaster in the recorded 

history of Myanmar. The cyclone struck the Ayeyarwady delta region, Myanmar in the late 

afternoon of 2nd May 2008, and lasted throughout the night and moved towards the southern 

Yangon region the next day. It brought high-speed winds over 200 kilometers per hour (108 

knots) and a tidal storm surged 3.6 meters (12 foot) high. Over the next day, the Cyclone Nargis 

caused catastrophic damage resulting in loss of life of about 140,000 people in the delta region 

of the country. Survivors' lives and livelihoods were severely affected with up to 800,000 

persons displaced, 450,000 houses damaged, croplands flooded, and significant losses of food 

stocks, paddy, livelihood related equipment, and infrastructure (Shwe, 2013; TCG, 2009). 
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Figure 2.1 and Figure 2.2 show a map of Cyclone Nargis affected region and storm surge 

level. 

Figure 2.1: Map of Cyclone Nargis Affected Region 

 
                                       Source: Post-Nargis Periodic Review 
 
 

Figure 2.2: Map of Storm Surge Level 

Source: Storm Surge Hazard Mapping 
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In our study, we choose Ayeyarwady delta region because it is the most severely 

affected region and because most people in that region are farmers, we seize the opportunity to 

examine the cyclone effect on household expenditure and crop production. Although Yangon 

region was also affected by the cyclone, the severity was not as compared to Ayeyarwady delta 

region. Ayeyarwady delta region also is known as "The rice bowl of Myanmar", as the country's 

largest rice producer, consists of 26 townships and it is estimated to be the most populated 

region in Myanmar. Farming is the main source of income and livelihood in the cyclone-

affected areas and rice is the most important crop in the area affected by the cyclone.  It is the 

region with the highest percentage of rural population (88 %) compared to 12% residing in 

urban areas. Eleven townships were struck by the cyclone Nargis and four of the townships 

such as Labutta, Bogalay, Mawlamyinegyun, and Pyapon were severely affected (TCG, 2009). 

2.3 Data 

The paper uses Myanmar Integrated Household Living Conditions Survey (IHLCA) data 

collected in 2004, 2009, 2010 to investigate the effect of the Cyclone Nargis on household 

expenditures and crop production. The dataset is collected by the United Nations Children’s 

Fund (UNICEF) jointly with the Planning Department of Ministry of National Planning and 

Economic Development and Swedish International Development Cooperative Agency. The 

dataset contains a wide range of information needed for our analysis and have variables on 

household head information, household size, and region of the resident. These allow us to 

analyze the effect of the Cyclone Nargis on household expenditures and crop production such 

as total household food and non-food expenditures, acres of cropland, and quantity of crop 

harvested.  
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2.3.1 Descriptive Summary Statistics  

Descriptive statistics of the main variables used in this analysis are presented in Table 2.1. It 

presents the outcome and control variables with the sample means respectively.  

Table 2.1: Summary Statistics 

Source: Integrated Household Living Condition Survey 

 Obs Mean Std.Dev Min Max 

Log of plot acre 23166 1.37 1.03 0 6.43 

Log of total quantity harvest 18060 5.11 1.81 0 13.46 

Log of monthly quantity of food consumed  52422 7.44 1.33 0 12.83 

Log of monthly food expenditure 52417 9.84 0.85 3.69 14.97 

Log of monthly non-food expenditure 52461 9.59 0.97 1.10 15.77 

Log of health expenditure 14226 9.36 1.63 0 17.73 

Log of education expenditure 20664 9.49 1.61 0.69 16.46 

HH head’s gender (Male==1) 49639 0.81 0.39 0 1 

Age of HH head 49639 51.73 13.58 16 99 

Educational level of HH head      

• KG 49639 0.01 0.09 0 1 

• Grade 1 49639 0.02 0.13 0 1 

• Grade 2 49639 0.09 0.28 0 1 

• Grade 3 49639 0.13 0.34 0 1 

• Grade 4 49639 0.27 0.44 0 1 

• Grade 5 49639 0.06 0.23 0 1 

• Grade 6 49639 0.04 0.21 0 1 

• Grade 7 49639 0.06 0.24 0 1 

• Grade 8 49639 0.06 0.23 0 1 

• Grade 9 49639 0.07 0.26 0 1 

• Grade 10 49639 0.04 0.20 0 1 

• Undergraduate diploma 49639 0.07 0.26 0 1 

• Bachelor degree 49639 0.04 0.20 0 1 

• Postgraduate degree 49639 0.04 0.19 0 1 

No. of HH member 49639 4.16 2.02 1 23 

Landlord (landlord==1) 52499 0.44 0.50 0 1 

Place of residence (Rural==1) 49639 0.69 0.46 0 1 
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The mean of households' head age in our samples is 51 years. Most of the households' 

heads are male in our sample with a mean percentage of 81 and the majority have completed 

grade 4 (24.5 percent) followed by undergraduate diplomas. The mean of number of household 

members is 4 persons in our sample. The mean of the Landlord household is 44 percent in the 

sample. About 69 percent of the Households in our observation are in rural areas and 31 percent 

in urban areas. 

2.4 Identification Strategy 

We estimate the effect of the cyclone Nargis on household expenditure and crop production  

using the difference in differences strategy. We compare household expenditure and crop 

production across the subsamples between households in the severely cyclone-affected 

townships and less cyclone-affected townships. We estimate the following equation: 

			𝑌!"# =	𝛽$ +	𝛽%𝑃𝑜𝑠𝑡!# 	+ 𝛽&𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡" + 𝛽'/𝑃𝑜𝑠𝑡!# ∗ 	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡"1 +	𝑋!"#( 𝛼 +	ℰ!"#,  (1) 

 Where, i stands for the individual household; j stands for township, and t stands for 

year. Y represents the outcome variables that include acres of cropland, the quantity of crop 

harvested, and expenditures on food and nonfood. 𝑃𝑜𝑠𝑡!# is a year dummy variable which 

equals one for year of 2009 and year of 2010 and equals zero for year of 2004. 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡" is 

a binary indicator that indicates one for storm surge 6ft and above areas (hereafter severely 

affected townships), and zero denotes for storm surge below 6ft areas (hereafter less affected 

townships). 𝑋!"#(  represents a set of household head and household characteristics such as age 

dummies, sex, years of schooling, number of household members, landlord, and household 

located area dummy. ℰ!" is the error term. Since our study setting is only 10 townships, using 

clustered standard errors will bias our results downward. To address this issue, we use bootstrap 

procedures to obtain valid inference as proposed by Cameron et al., (2010).   
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 The validity of our finding rests on the fact that the outcomes variables of interest did 

not show a differential trend in the treatment and control regions before the cyclone incidence. 

However, we could not estimate the parallel trend assumption owing to data unavailability. We 

perform a balancing test to see the correlation between treatment and control. Significant mean 

differences indicate treatment and control are unbalanced. However, as we show in table Table 

2.2, most of our covariates were below the accepted threshold of 5 percent, suggesting that our 

baseline covariates were balanced at the baseline supporting the parallel path theory. 

Table 2.2: Balancing Test 

Variable(s) 
Mean Mean  

| t | Diff. 
Control Treated  

HH head gender (Male==1) 0.88 0.86 1.30 -0.02 

Age of HH head 50.65 50.72 0.10 0.07 

Educational level of HH head 6.92 6.72 
1.00 

-0.21 

No. of HH member 4.18 4.20 0.10 0.01 

Landlord (Own==1) 0.92 0.93 0.77 0.01 
Place of residence (Rural==1) 0.92 0.90 1.53 -0.02 

Notes: Difference = Mean (not affected) − Mean (affected). * p<0.10, ** p<0.05, *** p<0.01. 

 

2.5. Empirical Results  

2.5.1 Main Findings 

We report our main specification results for the effect of the cyclone on household expenditures 

and crop production in Table 2.3. All dependent variables are in log levels:  log of cropland 

acre, log of quantity of crop harvest, log of quantity of monthly food, log of monthly food 

expenditure, log of monthly non-food expenditure, log of health expenditure, and log of 

education expenditure. We control the following covariates: household head and household 
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characteristics such as age dummies, sex, years of schooling, number of household members, 

landlord dummies, and household located area dummy are included in all columns and 

coefficients with bootstrap standard error are reported in parentheses. 

Table 2.3: The Effect of the Cyclone on Crop Production and Household Expenditure 

Notes: Coefficients with bootstrap standard errors are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01. 
The dependent variables are log of household expenditure and crop production specified in the heading of the 
table. We define the year 2009 & 2010 equals to one for the years 2009 and 2010 and equals to zero for the year 
2004. The dummy for the cyclone-affected township equals one for severely cyclone-affected townships, and 
zero denotes for less cyclone-affected townships. Household head and household characteristic controls include 
sex, age dummies, years of schooling, number of household members, landlord dummies, and household located 
area dummy. 

 

Table 2.3 shows the estimates of the effect of the cyclone on household expenditures 

and crop production. The results show that the cyclone significantly reduces cropland, the 

quantity of crops harvested, monthly non-food expenditure, and health expenditure by 35.0 

percent, 33.2 percent, 10.7 percent, and 17.8 percent respectively. The cyclone increases the 

quantity of food bought as well as monthly food expenditure by 10.2 percent and 18.2 percent 

respectively. We estimate the quantity of food bought to determine what happened to the rising 

food expenditure. Our findings suggest that the cyclone has a negative impact on crop 

production and household expenditure. One possible reason could the reduction in cropland 

which led to reduce quantity crops harvested as a result of the cyclone. As a result of the 

 

Cropland 
(Acre) 

Quantity of 
Crop 

Harvested 

Quantity 
of Food 
Bought 

Monthly 
Food 

Expenditure 

Monthly 
Nonfood 

Expenditure 

Health 
Expenditure 

Education 
Expenditure 

(1) (2) (3) (4) (5) (6) (7) 

      

Year 2009 & 2010 0.087** 0.048 2.510*** 0.810*** 1.080*** 0.838*** 1.056*** 

 (0.036) (0.084) (0.012) (0.012) (0.018) (0.056) (0.059) 

Treatment   0.590*** 0.398*** -0.090*** -0.221*** 0.042 0.257*** -0.048 

 (0.047) (0.080) (0.022) (0.022) (0.029) (0.073) (0.090) 

Interaction term -0.350*** -0.332*** 0.102*** 0.182*** -0.107*** -0.178* 0.157 

 (0.068) (0.127) (0.023) (0.027) (0.032) (0.105) (0.098) 

 
Controls 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

Observations 5399 4173 5399 5399 5399 3411 4857 
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reduced crops harvested, households had to channel their income on food for survival thus 

increased in food expenditure with resultant reduction in non-food expenditure.   

2.5.3 Heterogeneous Effect 

To explore the differential impact of the cyclone on landlord and rural residence we perform 

extra experiments. Table 2.4 reports the results of the heterogeneity of crop production and 

household expenditure by landlord. 

Table 2.4: Heterogeneity of Crop Production and Household Expenditure by Landlord 

Notes: Coefficients with bootstrap standard errors are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01. 
The dependent variables are log of household expenditure and crop production specified in the heading of the 
table. We define years of 2009 & 2010 equal one for the years 2009 and 2010 and equals to zero for the year 2004. 
The dummy for the cyclone-affected township equals one for severely cyclone-affected townships, and zero 
denotes for less cyclone-affected townships. Household head and household characteristic controls include sex, 
age dummies, years of schooling, number of household members, landlord dummies, and household located area 
dummy. 
 
 

The results of Table 2.4 show that the cyclone significantly reduces landlord 

households of cropland, the quantity of crops harvested, and monthly non-food expenditure by 

35.8 percent, 33.7 percent and 13.5 percent respectively. The cyclone increases landlord 

households of the quantity of food bought as well as monthly food expenditure by 12.0 percent 

and 31.5 percent respectively. Our findings show that landlord households experienced a 

 

Cropland 
(Acre) 

Quantity of 
Crop 

Harvested 

Quantity 
of Food 
Bought 

Monthly 
Food 

Expenditure 

Monthly 
Nonfood 

Expenditure 

Health 
Expenditure 

Education 
Expenditure 

(1) (2) (3) (4) (5) (6) (7) 

      

Year 2009 & 2010 0.094*** 0.058 2.444*** 0.793*** 1.129*** 0.860*** 1.146*** 

 (0.036) (0.094) (0.017) (0.024) (0.028) (0.123) (0.082) 

Treatment   0.594*** 0.403*** -0.123*** -0.431*** 0.057 0.225 0.065 

 (0.070) (0.092) (0.034) (0.055) (0.053) (0.149) (0.138) 

Interaction term -0.358*** -0.337*** 0.120*** 0.315*** -0.135** -0.085 0.051 

 (0.078) (0.128) (0.035) (0.063) (0.054) (0.211) (0.186) 

 
Controls 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

Observations 5246 4081 5246 5246 5246 1370 2115 
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significant reduction in crop production and an increase in food expenditure but there is no 

significant impact on health expenditure and education expenditure.  

Table 2.5: Heterogeneity of Crop Production and Household Expenditure by Rural Residence  

Notes: Coefficients with bootstrap standard errors are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01. 
The dependent variables are log of household expenditure and crop production specified in the heading of the 
table. We define years 2009 & 2010 equals to one for the years 2009 and 2010 and equals to zero for the year 
2004. The dummy for the cyclone-affected township equals one for severely cyclone-affected townships, and 
zero denotes for less cyclone-affected townships. Household head and household characteristic controls include 
sex, age dummies, years of schooling, number of household members, landlord dummies, and household located 
area dummy. 
 

Table 2.5 presents the results of the heterogeneous effect of the cyclone by households 

in rural residences. The results show that the cyclone significantly reduces households in rural 

residences of cropland, the quantity of crops harvested, and monthly non-food expenditure by 

26.9 percent, 31.9 percent, and 12.6 percent respectively. The cyclone increases households in 

rural residences of the quantity of food bought as well as monthly food expenditure by 11.1 

percent and 19.6 percent respectively. Our findings show that households in rural areas 

experience a significant reduction in crop production and an increase in food expenditure. One 

of the reasons could be that 88 percent of the population in Ayeyarwady delta region are living 

in rural areas and only 12 percent are living in urban areas. Thus, the severity of household 

residence in rural areas is high.   

 

Cropland 
(Acre) 

Quantity of 
Crop 

Harvested 

Quantity 
of Food 
Bought 

Monthly 
Food 

Expenditure 

Monthly 
Nonfood 

Expenditure 

Health 
Expenditure 

Education 
Expenditure 

(1) (2) (3) (4) (5) (6) (7) 

      

Year 2009 & 2010 0.081** 0.038 2.515*** 0.814*** 1.092*** 0.856*** 1.134*** 

 (0.038) (0.082) (0.010) (0.021) (0.024) (0.088) (0.067) 

Treatment   0.485*** 0.388*** -0.100*** -0.246*** 0.041 0.248** 0.139 

 (0.070) (0.094) (0.029) (0.033) (0.035) (0.115) (0.117) 

Interaction term -0.269*** -0.319** 0.111*** 0.196*** -0.126*** -0.173 -0.126 

 (0.084) (0.125) (0.028) (0.034) (0.040) (0.156) (0.134) 

 
Controls 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

Observations 4979 3895 4979 4979 4979 2233 3317 
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2.5.4 Robustness Checks  

We perform robustness checks to strengthen our finding the impact of the cyclone Nargis on 

crop production and household expenditure is valid. To perform the robustness checks, we 

compare household expenditure and crop production across the subsamples between household 

in the severely affected townships and non-affected townships using the same model from 

Equation (1).  

Table 2.6 report the estimate of the comparison of the household expenditure and crop 

production across the subsamples between household in the severely affected townships and 

nonaffected townships. Our findings are consistent and similar both in sign and significant 

which support the validity of our baseline estimates.   

Table 2.6: Robustness Check (Severely Affected and Non-affected Townships) 

Notes: Coefficients with bootstrap standard errors are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01. 
The dependent variables are log of household expenditure and crop production specified in the heading of the 
table. We define the year 2009 & 2010 equals to one for the years 2009 and 2010 and equals to zero for the year 
2004. The dummy for the cyclone-affected township equals one for severely cyclone-affected townships, and 
zero denotes for non-cyclone-affected townships. Household head and household characteristic controls include 
sex, age dummies, years of schooling, number of household members, landlord dummies, and household located 
area dummy. 

 

 

Cropland 
(Acre) 

Quantity of 
Crop 

Harvested 

Quantity 
of Food 
Bought 

Monthly 
Food 

Expenditure 

Monthly 
Nonfood 

Expenditure 

Health 
Expenditure 

Education 
Expenditure 

(1) (2) (3) (4) (5) (6) (7) 

      

Year 2009 & 2010 -0.096 0.353*** 2.520*** 0.939*** 1.191*** 0.921*** 1.173*** 

 (0.063) (0.086) (0.018) (0.024) (0.023) (0.097) (0.105) 

Treatment   0.551*** 0.525*** -0.090*** -0.064** 0.259*** 0.205** 0.295** 

 (0.072) (0.126) (0.024) (0.031) (0.028) (0.095) (0.120) 

Interaction term -0.216*** -0.660*** 0.085*** 0.100*** -0.228*** -0.232* 0.020 

 (0.082) (0.162) (0.024) (0.032) (0.031) (0.146) (0.127) 

 
Controls 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

Observations 2819 2303 2819 2819 2819 2083 2538 
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2.6 Discussion and Conclusion 

Farming is a major source of livelihood, income, and employment for the majority of 

households in developing countries. However, farmers most frequently experience crop losses 

due to weather-related natural disasters and these losses can lead to significant negative income 

shocks to farmers resulting in reduced expenditure. The reduction of expenditure can affect 

farm household members' human capital formation in the long run. To ensure the long-term 

welfare for farm households, it is essential to understand a reduction in expenditure due to 

negative income shocks, mainly in regions often faced with natural disasters. 

In this paper, we investigate the effect of the cyclone Nargis on household expenditure 

and crop production in the Ayeyarwady delta region of Myanmar, using the Myanmar 

Integrated Household Living Conditions Assessment Survey and applying difference-in-

difference (DID) strategy. We compare household expenditure and crop harvested across the 

subsamples between households in the severely cyclone-affected townships and less cyclone-

affected townships. Our findings suggest that the cyclone has a negative impact on crop 

production and household expenditure.  

The results show that the cyclone significantly reduces cropland, the quantity of crops 

harvested, monthly non-food expenditure, and health expenditure by 35.0 percent, 33.2 

percent, 10.7 percent, and 17.8 percent respectively. The cyclone increases the quantity of food 

bought as well as monthly food expenditure by 10.2 percent and 18.2 percent respectively. We 

estimate the quantity of food bought to determine what happened to the rising food expenditure. 

Our results are consistent with previous findings by Mottaleb et al., (2013),  show that cyclone 

Aila reduced rice land acre, paddy production, own-paddy consumption, the value of paddy 

sold and household expenditure and increased total food expenditure except for health 

expenditure. They report that cyclone Aila increased food expenditure among cyclone-affected 
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households by 26 percent since cyclone destroyed households' paddy yields, households were 

forced to buy foodstuffs from the market which they could have gotten from the farms. In terms 

of the magnitude of the food expenditure, the coefficients of our estimates are smaller 

suggesting that our findings are less pronounced. Previous studies by Cameron and Worswick 

(2001) and Kochar (1999), also note that in the event of a crop failure, households were unable 

to smooth their consumption, thus they were more likely to cut their expenditure. In our study, 

one possible reason could be that the reduction of cropland which led to reduce the quantity of 

crops harvested because of the cyclone. As a result, households channeled their income on food 

for survival thus food expenditure increased with resultant reduction in non-food expenditure. 

Before the cyclone, households mostly consume foodstuffs harvested from their farms, 

however, with the reduction of crops harvested as reveal in this study, households had to 

purchase the foodstuffs that were previously harvested from farms leading to increase in food 

expenditure. We do not doubt that our results are valid given that our robustness checks also 

support our main findings. To the best of our knowledge, this study could be the only study 

that investigates the effect of the cyclone on household expenditures and crop production in 

Myanmar.  

The findings indicate that natural disasters lead to major declines in the affected 

households' crop production and expenditure. Thus, these results highlight the role of natural 

disaster and to ensure food security and income of farm households. Mottaleb et al., (2013) 

propose that government and international donor agencies expand and improve disaster relief 

loans for farm households that are frequently impacted by natural disasters. We recommend 

that government and international donor agencies should provide loans for farm households 

affected by natural disasters. We also suggest that experts from agricultural research institutes 
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should disseminate information to farmers on high yielding crops that are resilient to climate 

change and to support them by making these crops available. 
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CHAPTER 3 

THE IMPACT OF HIGHER EDUCATION EXPANSION THROUGH 

DISTANCE EDUCATION ON GRADUATE’S JOB MARKET 

OUTCOMES: EVIDENCE FROM MYANMAR 

 

3.1 Introduction 

University education is perceived as one of the crucial forces for modernization and 

development, and the demand for its access is markedly increasing in developing countries. 

The modernization and transformation of the market economy in Myanmar have caused 

tremendous growth in higher education demand. As a result, both the number of universities 

and student enrollment has gradually increased since 1989 (Chinelone, 2018). To meet the 

higher demand, higher education expansion through distance education plays a vital role in 

Myanmar. 

In 1998, the University of Distance Education (UDE) had been established by the 

modernization of the University of Correspondence Courses (UCC). After the establishment 

of UDE, approximately 60 % of the matriculated students enrolled in the UDE every academic 

year. In 2012, 60.4 % of graduates are from the UDE and just 39.6% are from conventional 

universities and colleges (Caraig, 2018). The increase in the number of graduates via higher 

education expansion has raised many questions and they have been hotly debated. Scholars 

noted that the lower quality of UDE’s graduates as limited interaction between students and 

teachers, insufficient teaching aids, unlimited enrollment in UDE and unskilled teachers 

(Chinelone, 2018; Hlah, 2013; JICA, 2013; Labonte, 1993) and as a result, the degree turns 

just a signaling device to open the door for job opportunities (Thaung, 2015). After the 

expansion of higher education in China, the quality of higher education has decreased due to 
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limited resources and rapidly increasing student-teacher ratios. (Wu and Zheng, 2008). 

Education brings prosperity to both individuals and society; however, none of the benefits to 

education flow automatically from simply attending school; all depend on learning while in 

school. Besides, if the education system is poorly managed, it can promote social “bads” rather 

than social “goods” (World Bank, 2018; Livingstone, 1998).  

In this paper, we investigate the impact of higher education expansion through distance 

learning on graduates’ job-market performance using Myanmar data. We exploit the increase 

in the number of UDE as exogenous policy interventions to address four questions: How has 

this education expansion policy affected the individual’s educational opportunities? How has 

this education expansion policy impacted the unemployment of tertiary graduates? How has 

this education expansion policy impacted having a formal job of employed tertiary graduates? 

How has this education expansion policy impacted having a good job of employed tertiary 

graduates? Such questions tend to be basic but often posed in a public debate. Many criticize 

that the policy of higher education expansion caused high unemployment among tertiary 

graduates, while some claim that the policy of higher education expansion does not cause 

unemployment among tertiary graduates but reverses low capability (S. Li, Whalley, & Xing, 

2014; Oppedisano, 2014, 2011; Chevalier & Lindley, 2009; Walker & Zhu, 2008). To our 

knowledge, there are a few empirical researches that address these issues.  

This paper shows that the policy of education expansion has increased the probability 

of tertiary graduates, but that the same policy of expansion has also clearly increased 

unemployment for tertiary graduates and has decreased having a formal job and having a good 

job of tertiary graduates who are employed. We use the difference-in-differences strategy and 

integrated it with a propensity score matching (PSM) to estimate our results. We compare the 

job market outcomes of policy-affected graduates relative to those not affected by the policy. 
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Generally, the college entrance age in Myanmar is at the age of 16; therefore, we assume that 

the UDE expansion in 1998 will affect individuals born in 1982 and after will not affect 

individuals born before 1982.  

We perform the same experiments to examine the differential impact of the expansion 

policy between males and females to provide a more detailed picture. We find that 

unemployment for policy-affected male graduates experienced higher unemployment while 

female graduates experienced lower unemployment. Our findings are consistent with the 

traditions of the community because females normally do not actively search for jobs. The 

results also suggest that males have more chance to get a formal job and a good job while 

females have less chance to get a formal job and a good job. Our findings support the results 

of previous studies ( S. Li et al., 2014; Knight, Deng, & Li, 2017; Chi, Freeman, & Li (2012); 

S. Li & Xing, 2010; Y. A. Li, Whalley, Zhang, & Zhao, 2011; Meng, Shen & Xue, 2009) that 

examined the impact of China's rapid expansion of higher education, in the period of 1998–

2008, when enrolments almost six-folds. They found out that the expansion policy increased 

the probability of attending college, the unemployment rate, and has reduced the relative wages 

and the proportion of good jobs. 

The remainder of the paper is organized as follows. Section 2 briefly describes the higher 

education expansion in Myanmar. Section 3 illustrates the data using in this paper. Section 4 

describes the identification strategy. Section 5 presents the empirical results and Section 6 

concludes the paper. 

3.2 Institution Background 

The first-ever distance education institution in Myanmar, the University Correspondence 

Courses (UCC) were initiated in 1970s to offer higher education to those who are not able to 

pursue it at conventional universities for various reasons. UCC has been designed to conform 
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with normal university degree courses and to be conducted on the same level as full-time 

courses (Caraig, 2018). 

In 1975-76 academic year, a Bachelor’s degree in UCC in Arts, Science, Law, and 

Economics was first offered at Yangon University and served the whole country. Beginning 

from the academic year 1985-86, the UCC has been extended to all universities, degree 

colleges, and colleges, each of which has become a center for student registration in the region. 

The teaching-learning process at that time was based on printed materials and radio lessons 

(Caraig, 2018). 

In 1998, Yangon University of Distance Education (YUDE) and Mandalay University 

of Distance Education (MUDE) were established to modernize the UCC. YUDE affiliates to 

regional branches in Lower Myanmar and MUDE affiliates to regional branches in Upper 

Myanmar. Before 1998, there were twenty-two regional branches. After the establishment of 

YUDE and MUDE, regional branches rise to thirty-three. 

The main purpose of the establishment of the two universities of distance education is 

to provide access to higher education to the people of Myanmar at a minimum cost and without 

having to leave their homes and jobs, particularly for students living in border areas. Students 

can take any course of study within a set of criteria set by the Department of Higher Education. 

The main mode of delivery of courses included printed materials, laboratories, assignments, 

and intensive classes. Students must attend their respective universities for the laboratory and 

final examination. Students completed successfully their course studies over 60% of intake.          

We assume that the increase in the number of graduates due to the expansion policy in 1998 

will have a consequence on the job market especially for the individuals who have tertiary 

education. This paper investigates how this higher education expansion policy affects 

individual graduates’ job market performance in the remaining sections.  
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3.3 Data Source and Description  

We use Myanmar Labour Force - 2015, Child Labour and School-to-Work Transition Survey 

(2015-LF-CL-SWTS) to investigate the impact of higher education expansion and graduates’ 

job market performance. The dataset is collected by the Ministry of Labour, Employment and 

Social Security jointly with the Central Statistical Organization and International Labour 

Organization. The dataset contains a wide range of information needed for our analysis and has 

the variable of each household member: individual characteristics, family background, 

household characteristics, educational level, employment status, occupational level, and the 

region of the resident. Therefore, the survey allows us to analyze the effects of the expansion 

policy on the graduates’ job market performance such as unemployment, having a formal job, 

and having a good job.  

In this data, the numbers of individual-level observations are 101,278 before cleaning 

and the sample size of the households is 24,000. This sample survey was based on the 2014 

Myanmar Population and Housing Census which include 80,557 enumeration areas. A sample 

of 1,500 was chosen from enumeration areas and 24,000 households were selected from 

selected enumeration areas for the survey. We restrict the samples only for individuals who are 

secondary and tertiary graduates since our emphasis is on the effects of the education expansion 

policy on higher education, but due to data limitations, tertiary graduates cannot be 

distinguished as graduates from UDE or graduates from Conventional University.  

In Myanmar, children normally enter primary school at the age of five and graduate 

secondary education at the age of sixteen right after they graduate from secondary school, they 

proceed to College after successful college entrance examination normally at age 16. As a 

result, we assume that the UDE expansion policy in 1998 will affect individuals born in 1982 

and after and those individuals born before 1982. In this study, we restrict samples only for 
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individuals who are aged 15-64 (working age group). Table 3.1 report summary statistics of 

the main variables used in this study.  

Table 3.1: Summary Statistics 

 Obs Mean Std.Dev Min Max 
Dummy for unemployment (yes=1) 11110 0.314 0.464 0 1 
Dummy for having a formal job (yes=1) 7353 0.364 0.481 0 1 
Dummy for having a good job (yes=1) 7532 0.299 0.458 0 1 
Age of respondent 11175 33.561 12.085 15 64 
Gender of respondent (male=1) 11175 0.444 0.497 0 1 
Household head’s gender (male=1) 11175 0.761 0.427 0 1 
Urban household (yes=1) 11175 0.668 0.471 0 1 
# of household member 11175 5.032 2.195 1 25 
Dummy for house ownership (Own=1) 11175 0.856 0.351 0 1 
Dummy for having access to take loan (yes=1) 11175 0.242 0.429 0 1 
Dummy for having a vocational training (yes=1) 11175 0.083 0.275 0 1 
Household head’s education (year of schooling) 10590 4.139 2.090 0 11 
Household head’s occupation      

• Managers 9666 0.027 0.161 0 1 
• Professionals 9666 0.057 0.232 0 1 
• Technicians  9666 0.056 0.230 0 1 
• Clerical support workers 9666 0.028 0.165 0 1 
• Service and sale workers 9666 0.153 0.360 0 1 
• Skilled agricultural workers 9666 0.165 0.372 0 1 
• Trade workers 9666 0.071 0.256 0 1 
• Machine operators 9666 0.046 0.209 0 1 
• Elementary occupation 9666 0.048 0.213 0 1 
• Unemployed 9666 0.347 0.476 0 1 
• Retired 9666 0.003 0.053 0 1 

Types of dwelling      
• Concrete roof (yes=1) 11175 0.049 0.216 0 1 
• Tin roof (yes=1) 11175 0.843 0.364 0 1 
• Tile roof (yes=1) 11175 0.012 0.110 0 1 
• Thatches (yes=1) 11175 0.083 0.276 0 1 
• Bamboo roof (yes=1) 11175 0.012 0.108 0 1 
• Other roof (yes=1) 11175 0.000 0.016 0 1 

Marital Status      
• Single (yes=1) 11175 0.508 0.500 0 1 
• Married (yes=1) 11175 0.451 0.498 0 1 
• Separated (yes=1) 11175 0.013 0.113 0 1 
• Divorced (yes=1) 11175 0.006 0.080 0 1 
• Widowed (yes=1) 11175 0.021 0.145 0 1 

   Sources: 2015 Myanmar Labour Force Survey 
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3.4 Identification Strategy  

To estimate the impact of Higher Education Expansion on the job market outcomes of policy-

affected graduates, we use the difference-in-differences approach with propensity score 

matching (PSM). We compare the outcome variables – unemployment, having a formal job, 

and having a job in a good position between policy-affected graduates and graduates not 

affected by the policy using job market outcomes of non-graduates as a counterfactual. The 

college entrance age in Myanmar; generally, is at the age of sixteen. We assume that the UDE 

expansion in 1998 will affect individuals born in 1982 and after and will not affect individuals 

born before 1982.  

To estimate the effects of UDE expansion on the graduates’ job market outcomes, we 

use the following equation:  

 𝑌!" =	𝛽$ +	𝛽%𝑇012 + 𝛽%𝑇234 +	𝛽'𝑇012 ∗ 	𝑇234 +	𝑋!"( 𝛽* +		𝑍!"( 𝛽* + 𝑎" +	ℰ!",    (1)  

where, 𝑌!" represents outcome variables – unemployment, having a formal job, and having a 

good job. “Unemployment”4 is a dummy variable, which equals one for the unemployed 

individual, and zero equals for the individual who is employed. In unemployment, we restrict 

the individual who is attending training or school, sickness, injury or disability, and too young 

or too old to find a job. “Having a formal job” is an indicator, which takes one for the individual 

who is employed in the formal sector (hereafter Formal Job), and zero takes an individual who 

is employed in the informal sector5. The informal employment is classified as working family 

members, self-employed in the informal sector, employees with no social security contribution 

 
4 Unemployment is defined as all those of working age who were not in employment, engaged in job-seeking 
activities during a specified recent period, and were currently available for job seeker with an opportunity to work 
(ILO, 2016). 
5 The informal sector is defined as unregistered private enterprises under any ministry and small privately-owned 
companies involved producing goods or services for sale or exchange. 
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from the employer, employees with social security contributions from the employer but no paid 

annual leave, and no paid sick leave (ILO, 2016). “Having a good job” indicates one for the 

individual who has a good job, zero indicates the other job. We define jobs in a good position 

(hereafter Good Job) as managers, professionals, technicians, and associate professionals 

(Knight et al., 2017). The occupational level is divided into nine categories following the ILO's 

International Standard Classification of Occupations. Out of nine categories of occupational 

level, "Good Job" is defined as managers, professionals, technicians and associate 

professionals, and nine other categories as other jobs. 𝑇012 is a dummy variable which equals 

one for the individuals born in 1982 and after (policy-affected groups), and zero takes 

individuals born before 1982 (not affected groups by the policy). 𝑇234 is an indicator that 

indicates one for tertiary graduates, and zero denotes for secondary graduates. 𝑋!"(  represents 

individual characteristics such as age, sex, and marital status. 𝑍!"(  denotes household-level 

characteristics such as gender of household head, the education level of household head, 

household size, types of dwelling, ownership status of dwelling, household take any loan, and 

attending vocational training. In all regressions, we control for dummies for fifteen regions, 

"𝑎"”. ℰ!" is the error term. Since the number of our regions are few (only 16 regions) using 

clustered standard errors will bias the standard errors downwards over-rejecting our null 

hypotheses. To address this issue, we use bootstrap procedures to obtain valid inference as 

proposed by Cameron et al., (2010).   

One of the possible threats to the identification strategy of conventional Difference-in-

Differences setting is the change in the composition of the control group. After the expansion 

policy, a certain portion of individuals who have the same ability with the individuals who did 

not have a tertiary education before the expansion will have a chance to graduates. In other 

words, a certain group of individuals who are not as smart as the individuals who would have 
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a tertiary education even if there exists no expansion policy will have a tertiary education. So, 

the adverse effect of graduates’ job market performance may be associated with individuals’ 

abilities. If we could control for individual abilities such as IQ test score, and proxies for 

cognitive ability, the ability endogeneity problem would be able to solve. Nevertheless, the 

LFS does not support the required information. To mitigate the ability endogeneity problem, 

we use a propensity score matching approach in the Difference-in-Differences setting.    

To have a proper counterfactual of policy-affected individuals and to control the 

potential endogeneity in the individual’s abilities in a conventional Difference-in-Difference 

setting, we use a Propensity Score Matching (PSM) method and apply Kernel matching, to 

select graduates who were born before 1982 (not affected by the policy) with a weighted 

predicted probability based on the covariates: parents' characteristics, father's education, and 

father's occupations; place of residence, rural or urban, regions; households' socio-economic 

conditions, types of dwellings, house ownership, access to the loan that we believe which are 

the most important conditions to the decision of going college. We use a Probit model to predict 

the probability of having a college degree as follows:  

																																										𝑃! = Pr(	𝐷𝑒𝑔𝑟𝑒𝑒!|𝑋!) = Φ	(𝑋!(	𝛽 +	ℰ!),                (2) 

Where 𝐷𝑒𝑔𝑟𝑒𝑒! is a binary variable which equals one for an individual with a college 

degree, zero takes otherwise. 𝑋! is a vector of covariates such as parents' characteristics, father's 

education, and father's occupations; place of residence, rural or urban, regions; households' 

socio-economic conditions, types of dwellings, house ownership, access to the loan that are 

important to the decision of going College, and Φ is standard normal cumulative distribution 

function. Then we calculate the predicted probability of having a degree (propensity score) of 

individuals who were not affected by the policy, and then we create matched individuals who 

do have a degree and born before 1982 by using a Kernel propensity-score weight. Then, we 
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use the predicted probability to implement a suitable counterfactual of policy-affected 

graduates born in 1982 and after. 

Then, we compare the job market outcomes between individuals who have a tertiary 

degree and who do not have and individuals who were born before 1982 and born in 1982 and 

after. To estimate the effects of UDE expansion, in other words, to obtain a kernel propensity-

score matching DID treatment effect, we use the following equation: 

𝐷𝐼𝐷 = {𝐸(𝑌!"#$|𝐷!#$ = 1, 𝑌𝑂𝑈𝑁𝐺! = 1) −		𝑤!"#%& × 𝐸(𝑌!"#%|𝐷!#% = 0, 𝑌𝑂𝑈𝑁𝐺! = 1) −

	𝑤!"#$' × 𝐸(𝑌!"#$|𝐷!#$ = 1, 𝑌𝑂𝑈𝑁𝐺! = 0) −	𝑤!"#%' × 𝐸(𝑌!"#%|𝐷!#% = 0, 𝑌𝑂𝑈𝑁𝐺! = 0),							  (3) 

𝑌!35% represents the job market outcomes of graduates and  𝑌!35$ indicates the outcomes of 

non-graduates. 𝑤!35%6  , 𝑤!35$6  are the Kernel weights for the individuals born before 1982, who 

have a tertiary degree and who do not have, respectively. 𝑤!35$7  is the Kernel weight for 

individuals born in 1982 and after and do not have a degree. Three sets of Kernel weights are 

calculated by using the estimated propensity-score and do not require the panel structure of the 

units of the samples (Villa, 2016).  

3.5 Empirical Results 

We first estimate the probability of having a degree of individuals born before 1982 by using 

a Probit model. The estimates of equation (1) are described in Table 3.2. Coefficients indicate 

that the variables we used are important determinants of the decision for going to the 

University. Most of the covariates are significant at 1%, supporting the assumption that 

household heads’ gender, household head’s education, place of residence, and the household 

socio-economic conditions influence the probability of having a college degree. PSM provides 

a robust and reliable control sample for estimating the effects of expansion policy on graduates’ 
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job market outcomes if the household socio-economic conditions are balanced between 

graduates and non-graduates. 

Table 3.2: Probit model: Probability of Having a College Degree 

                   Variables Coefficients Standard error 

Household head’s Education 0.169*** (0.013) 
Respondent’s gender (male=1) 
Respondent’s age 

-0.570*** 
-0.024*** 

(0.047) 
(0.002) 

Urban (yes=1) 0.161*** (0.056) 
Dummy for house ownership (Own=1) 0.126* (0.066) 
Household head’s Occupation (Omitted = 
Manager) 

  

• Professionals -0.041 (0.157) 
• Technicians -0.474*** (0.161) 
• Clerical support workers -0.592*** (0.183) 
• Service and sale workers -0.690*** (0.143) 
• Skilled agricultural workers -0.875*** (0.155) 
• Trade workers -0.896*** (0.164) 
• Machine operators -0.822*** (0.171) 
• Elementary occupation -1.174*** (0.184) 
• Unemployed -0.459*** (0.138) 
• Retired -0.523 (0.424) 

Type of Dwelling (Omitted=Concrete roof)   
• Tin roof -0.191* (0.100) 
• Tile roof -0.272 (0.209) 
• Thatches roof -0.396*** (0.142) 
• Bamboo roof -0.669** (0.263) 

Region (Omitted=Kachin)   
• Kayah 1.001*** (0.236) 
• Kayin 0.030 (0.158) 
• Chin -0.292* (0.169) 
• Sagaing 0.284** (0.111) 
• Thanintharyi 1.290*** (0.189) 
• Bago 0.231** (0.115) 
• Magway 0.485*** (0.116) 
• Mandalay 0.784*** (0.105) 
• Mon 0.492*** (0.120) 
• Rakhine 0.205* (0.124) 
• Yangon 0.504*** (0.098) 
• Shan 0.337** (0.133) 
• Ayeyawady 0.383*** (0.123) 
• Nay Pyi Taw 1.106*** (0.134) 

Observations 3908  
Notes: Coefficients with bootstrap standard errors are reported in parentheses. The dependent variable is a dummy variable 
that equals one for the individuals who have a bachelor's degree and zero otherwise. * p<0.10, ** p<0.05, *** p<0.01. 
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We also show the results of balancing test in Tabel 3.3, in the ‘pre-matching’, the mean 

differences most of the characteristics exceeds 5 percent – the recommended threshold for 

balance between treatment and control (Caliendo and Kopeinig, 2008) indicating imbalances 

at baseline covariates which may make our estimates bias, hence the need for propensity score 

matching approach to ensure both control and treatment similarly. Applying the kernel 

matching as we present in the same table ‘post-matching’ the results showing success in 

matching as the mean differences of most covariates are 5 percent and below.  

Tables 3.3: Balancing test 

  Before Matching   Post Matching  
Weighted Mean  Mean 

Diff. 
Mean  Mean 

Treated Diff. 
Variable(s) Control Treated Control 

       
HH head’s education 4.45 5.36 0.905*** 4.80 5.36 0.56*** 
HH head’s occupation 7.44 6.72 -0.72*** 6.98 6.62 -0.36*** 
Loan access 0.22 0.17 -0.05*** 0.16 0.16 0.00 
House own (Own=1) 0.86 0.83 -0.04*** 0.86 0.84 -0.03** 
Type of Dwelling 2.19 2.04 -0.15*** 2.03 2.02 -0.01 
Urban (Urban=1) 0.69 0.80 0.11*** 0.81 0.82 0.01 
Region 8.50 9.55 1.05*** 9.46 9.54 0.08 

 

3.5.1 DID and PSM-DID Estimates 

The estimates of Equation (1) using DID without propensity-score-matching are reported in 

Panel A of Table (4). Column (1) reports the policy effect on unemployment of policy-affected 

graduates and column (2) and (3) estimates the impact of expansion on unemployment of 

policy-affected female graduates and policy-affected male graduates. Control covariates such 

as individual characteristics, family background, household characteristics, and region fixed 

effects are included in all columns. The coefficient of the policy affected age in all columns 

are positive and statistically significant at the 1 percent level in the first and second column 

and the coefficient of policy-affected graduates in all columns are negative and statistically 
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significant at the 1 percent level in all column. The DID estimator is estimated to be positive 

in column (1), in all samples and male sample in column (3), both statistically significant with 

the probability of being under unemployment of policy-affected graduates increase by 4 

percent and the probability of policy-affected male graduates increase by 11.3 percent 

respectively. The policy-affected female graduates are estimated to be negative with the 

probability of unemployment by 2.4 percent, but not statistically significant. The result shows 

that policy-affected males are more likely to be unemployed while policy-affected females are 

less likely to be unemployed. One reason for this difference between genders is that females 

were not actively searching for jobs and working informally at home. But males are more likely 

to be employed in a professional job with higher salaries.  

The estimates of DID with PSM (propensity-score-matching) are reported in Panel B 

of Table 3.4. The dependent variable and control covariates are same as in Panel A. The 

coefficient of the policy-affected age in all column are positive and statistically significant at 

the 1 percent level and the coefficient of the policy-affected graduates in all column are 

negative and statistically significant at the 1 percent level. The coefficient of the interaction 

term in Column (1) of Panel B indicates that the probability of being unemployment of policy-

affected graduates increase by 9.2 percent, in Column (2) suggests that policy-affected male 

graduates have 22.9 percent higher probability of unemployment but we find no evidence in 

policy-affected female graduates after the expansion policy. The magnitude of the estimates in 

PSM-DID and traditional DID are different. The coefficients in traditional DD might be 

underestimated when we investigate the policy impacts on graduates’ job market outcomes 

because we cannot control the ability of graduates. To mitigate the problem of ability 

endogeneity in policy-affected graduates and graduates who are not affected by the policy, in 

the PSM-DD setting, we match graduates and non-graduates in both pre-policy intervention 
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and post-policy intervention by using father’s occupation and education, place of residence, 

and other socio-economic conditions that are assumed to be important to the decision of going 

College. After purging the ability endogeneity in the PSM-DD setting, the size of coefficients 

is more pronounced than in the traditional DD setting.  

Table 3.4: Effects on Graduates’ Unemployment: DID with Matching 
 

 All samples Female Male 
Dummy for Unemployment (Yes=1) (1) (2) (3) 

Panel A: DID without Matching   

Individual who was born after 1982 (yes=1) 0.106*** 0.163*** 0.001 
(0.014) (0.027) (0.016) 

Tertiary graduates (yes=1) -0.137*** -0.155*** -0.119*** 
 (0.014) (0.026) (0.015) 
Interaction terms 0.040** -0.024 0.113*** 
 (0.018) (0.031) (0.023) 
Individual Controls Yes Yes Yes 
Household Controls Yes Yes Yes 
Region FE Yes Yes Yes 
Observations 9406 4534 4872 
Panel B: DID with PSM 

Individual who was born after 1982 (yes=1) 0.061*** 0.099*** -0.069*** 
 (0.014) (0.021) (0.018) 
Tertiary graduates (yes=1) -0.214*** -0.215*** -0.251*** 
 (0.015) (0.023) (0.018) 
Interaction terms 0.092*** 0.028 0.229*** 
 (0.019) (0.029) (0.025) 
Observations 9406 4534 4872 
Notes: Coefficients with bootstrap standard errors are reported in parentheses. We use all samples in column (1), and in column 
(2) and (3), we restrict sample as female and male respectively. Dependent variables, “Unemployment”, in all columns are a 
dummy variable that equals one for the individual who is not employed, and zero equals for the individual who is employed. 
We define one as a policy-affected individual who was born after 1982, and zero takes otherwise. The dummy for tertiary 
graduates equals one for individuals who have a tertiary degree, and zero denotes for individuals who have a secondary degree. 
“Individual controls” include age, gender, marital status, and having vocational training. “Household controls” include 
household head’s education, household head’s occupation, house ownership, types of dwelling, having access to take a loan, 
place of residence, and region.  * p<0.10, ** p<0.05, *** p<0.01. 
 

The policy impacts on having a formal job for the graduates that we estimate with a 

conventional DID is in Panel A of Table 3.5. The DID estimator is negative in all columns but 

only column (1), all samples, and column (2), policy-affected female graduates are statistically 

significant. Policy-affected graduates have decreased the probability of having a formal job by 
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4.0 percent at the 5 percent statistically significant level and policy-affected female graduates 

have decreased the probability of having a formal job by 7.2 percent at 10 percent statistically 

significant level. The DID estimator of policy-affected male graduates is negative with the 

probability of having a job by 0.2 percent, but not statistically significant. The result shows 

that policy-affected female graduates are less likely to have a formal job while the policy-

affected male graduates are more likely to have a formal job.  

The estimates of DID with PSM are reported in Panel B of Table 3.5. The dependent 

variable and control covariates are same as in Panel A. The coefficient of the interaction term 

in Column (1) of Panel B indicates that the probability of having a formal job of policy-affected 

graduates has decreased by 7.0 percent and Column (2) shows that the probability of having a 

formal job of policy-affected female graduates has decreased by 6.2 percent. The probability 

of having a formal job of policy-affected male graduates is estimated to be negative and there 

is no significant impact after the expansion policy. The magnitude of the estimates in the PSM-

DID setting is more pronounced compared to the estimates of DID without matching. 
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Table 3.5: Effects on Having a Formal Job: DID with Matching 

Dummy for Having a Formal Job (Yes=1) 
All samples Female Male 

(1) (2) (3) 

Panel A: DID without Matching   

Individual who was born after 1982 (yes=1) 0.005 0.059 -0.040 
(0.022) (0.042) (0.029) 

Tertiary graduates (yes=1) 0.268*** 0.330*** 0.150*** 
 (0.016) (0.032) (0.024) 
Interaction terms -0.045** -0.072* -0.002 
 (0.021) (0.037) (0.030) 
Individual Controls Yes Yes Yes 
Household Controls Yes Yes Yes 
Region FE Yes Yes Yes 
Observations 7426 2706 3558 
Panel B: DID with PSM 

Individual who was born after 1982 (yes=1) 0.000 -0.109*** -0.140*** 
 (0.029) (0.025) (0.022) 
Tertiary graduates (yes=1) 0.279*** 0.331*** 0.190*** 
 (0.035) (0.027) (0.021) 
Interaction terms -0.070* -0.062* -0.018 
 (0.040) (0.035) (0.031) 
Observations 7426 2706 3558 
Notes: Coefficients with bootstrap standard errors are reported in parentheses. We use all samples in column (1), and in column 
(2) and (3), we restrict sample as female and male respectively. The dependent variables, “Having a formal job”, in all columns 
are a dummy variable that equals one for the individual who is employed in the formal sector, and zero equals for the individual 
who is employed in the informal sector. We define one as policy-affected individuals who were born after 1982, and zero takes 
otherwise. The dummy for tertiary graduates equals one for individuals who have a tertiary degree, and zero denotes for 
individuals who have a secondary degree. “Individual controls” include age, gender, marital status, and having vocational 
training. “Household controls” include household head’s education, household head’s occupation, house ownership, types of 
dwelling, having access to take a loan, place of residence, and region.  * p<0.10, ** p<0.05, *** p<0.01. 
 

The impact of policy on having a good job for the graduates that we estimate with a 

conventional DID is in Panel A of Table 3.6. The interaction terms are negative in all columns 

but only column (1), all samples, and column (2), policy-affected female graduates who have 

a formal job are statistically significant. The probability of the policy-affected graduates who 

are employed decrease having a good job by 5.1 percent at the 1 percent statistically significant 

level and the probability of the policy-affected female graduates who have a formal job 

decrease having a good job by 6.7 percent at 10 percent statistically significant level. The 

policy-affected male graduates who have a formal job is negative with the probability of having 
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a good job by 1.4 percent and policy-affected male graduates who have an informal job is 

positive with the probability of having a good job by 4.4 percent but not statistically significant. 

The result shows that policy-affected male graduates who have a formal job are more likely to 

have a good job while policy-affected female graduates who have a formal job is less likely to 

have a good job. In general, policy-affected graduates are less likely to have a good job. 

We report the estimates of DID with PSM in Panel B of Table 3.6. The dependent 

variables and control covariates are same as in Panel A. The coefficient of the interaction term 

in Column (1) of Panel B indicates that the probability of having a good job of policy-affected 

graduates who are employed decreased by 10.1 percent and Column (2) shows that the 

probability of having a good job of policy-affected female graduates who have a formal job 

decrease by 8.4 percent but we find no significant impact on Column (3-5) after the expansion 

policy. The magnitude of the estimates in the PSM-DID setting is more pronounced compared 

to the estimates of conventional DD. 
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Table 3.6: Effects on Having a Good Job: DID with Matching 

Dummy for Good Job 
(Yes=1) 

All 
samples 

Female Male 

  Formal Informal Formal Informal 
(1) (2) (3) (4) (5) 

Panel A: DID without Matching   
Individual in 1982 and after 
(yes=1) 

-0.069*** -0.023 -0.032 -0.048*** -0.062 
(0.013) (0.023) (0.066) (0.013) (0.043) 

Tertiary graduates (yes=1) 0.316*** 0.258*** 0.389*** 0.133*** 0.226*** 
 (0.016) (0.033) (0.050) (0.019) (0.038) 
Interaction terms -0.051*** -0.067* -0.004 -0.014 0.044 
 (0.020) (0.039) (0.070) (0.027) (0.056) 
Individual Controls Yes Yes Yes Yes Yes 
Household Controls Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Observations 6431 1592 1108 2404 1145 
Panel B: DID with PSM 

Individual born after 1982  -0.019 -0.015 -0.007 -0.100*** 0.008 
(yes=1) (0.015) (0.030) (0.039) (0.024) (0.040) 
Tertiary graduates (yes=1) 0.385*** 0.242*** 0.483*** 0.188*** 0.331*** 
 (0.015) (0.035) (0.038) (0.024) (0.033) 
Interaction terms -0.101*** -0.084** -0.054 -0.021 -0.063 
 (0.021) (0.041) (0.053) (0.033) (0.057) 
Observations 6431 1592 1108 2404 1145 

Notes: Coefficients with bootstrap standard errors are reported in parentheses. We use all samples in column (1), and in column 
(2) to (5), we restrict sample as female and male respectively. The dependent variables, “Having a good job”, in all columns 
are a dummy variable that equals one for the individual who has a good job, and which equals zero for the individual who has 
another job. We define one as policy-affected individuals who were born after 1982, and zero takes otherwise. The dummy 
for tertiary graduates equals one for individuals who have a tertiary degree, and zero denotes for individuals who have a 
secondary degree. “Individual controls” include age, gender, marital status, and having vocational training. “Household 
controls” include household head’s education, household head’s occupation, house ownership, types of dwelling, having 
access to take a loan, place of residence, and region.  * p<0.10, ** p<0.05, *** p<0.01 
 

3.5.2 Complimentary Analysis 

We also estimate the narrowing sample within 3 years cohort and 5 years cohort nearby 

1982 using the same model from Eq (1). The estimates of the impact of the higher education 

expansion policy on graduate’s job market outcomes by 3 years birth cohort and 5 years birth 

cohort after 1982 are reported in Appendix Table C.1 and C.2.  
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3.6 Conclusion 

This paper explores the changes that have taken place in Myanmar's higher education system 

since 1998 and particularly in the University of Distance Education which we label as 

Myanmar’s higher educational transformation. We attempt to track these changes and analyze 

their consequences; it is believed that it has a huge impact on the labour market of Myanmar. 

This study used one-period cross-sectional data from Myanmar Labour Force Survey - 

2015. Difference-in-Differences strategy, which is integrated with a propensity score matching 

(PSM) is employed to examine the effects of education expansion policy on job market 

outcomes – unemployment, having a formal job, and having a good job by comparing between 

policy-affected graduates and graduates not affected by the policy. 

We find that the education expansion policy has increased the probability of tertiary 

graduates, but that the same policy of expansion has increased unemployment of policy-

affected graduates and has decreased having a formal job and having a good job of policy-

affected graduates in overall estimations. We show that unemployment was higher among 

policy-affected males graduates while policy-affected female’s graduates experienced lower 

unemployment. We also show that males have more chance to get a formal job and a good job 

while females have less chance to get a formal job and a good job.  

Overall estimations of our results indicate that the expansion policy have a negative 

impact on the job market. JICA (2013) noted that the excess supply in Myanmar’s industrial 

labor force is due to the fact that the increase in the number of new university graduates is 

larger than the increase in employment which is linked with our findings that the expansion 

policy has a negative impact on employment and a decrease in having a formal and a good job. 
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Our limitation in this study is that; we do not have data set that contains graduates from 

the university of distance education in Myanmar and we use a data set that has overall 

graduates. The reason is that 60 percent of graduates in every academic year are from the 

university of distance education and our findings may reflect the job market of distance 

education graduates. However, we are cautious to conclude that the distance education 

expansion policy in Myanmar generally has a negative impact on university graduates' job 

market, in that, our findings include graduates not affected by the policy. 
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APPENDIX C 

Table C.1: The Impact of Expansion Policy on Job Market Outcomes by 
3 Years Birth Cohort 

 Unemployment  Formal Job  Good Job 
 (1) (2) (3) 

   

3 Years birth cohort (yes=1) 0.061* -0.027 -0.04 
-0.033 -0.04 -0.05 

Tertiary graduates (yes=1) -0.055* 0.187*** 0.251*** 
 -0.029 -0.037 -0.061 
Interaction terms 0.009 -0.052 -0.049 
 -0.028 -0.052 -0.061 
    
Individual Controls Yes Yes Yes 
Household Controls Yes Yes Yes 
Region FE Yes Yes Yes 
Observations 1389 1134 1171 

Notes: Linear probability models. Coefficients with bootstrap standard error are reported in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01. The dependent variables are unemployment, having a formal job and having a good job. We define one as policy-
affected individuals who was 3 years birth cohort after 1982, and zero takes zero takes 3 years birth cohort before 1982. The 
dummy for tertiary graduates equals one for individuals who have tertiary degree, and zero denotes for individuals who have 
a secondary degree. “Individual controls” include age, gender, marital status, and having vocational training. “Household 
controls” include household head’s education, household head’s occupation, house ownership, types of dwelling, having 
access to take loan, place of residence and region.  * p<0.10, ** p<0.05, *** p<0.01 
 

Table C.2: The Impact of Expansion Policy on Job Market Outcomes by  
5 Years Birth Cohort 

 Unemployment  Formal Job  Good Job 
 (1) (2) (3) 

   

5 Years birth cohort (yes=1) 0.026 -0.022 0.009 
(0.020) (0.051) (0.053) 

Tertiary graduates (yes=1) -0.098*** 0.239*** 0.284*** 
 (0.020) (0.042) (0.025) 
Interaction terms 0.034 -0.002 -0.036* 
 (0.026) (0.048) (0.020) 
    
Individual Controls Yes Yes Yes 
Household Controls Yes Yes Yes 
Region FE Yes Yes Yes 
Observations 3094 1945 1985 

Notes: Linear probability models. Coefficients with bootstrap standard error are reported in parentheses. * p<0.10, ** p<0.05, 
*** p<0.01. The dependent variables are unemployment, having a formal job and having a good job. We define one as policy-
affected individuals who was 5 years birth cohort after 1982, and zero takes 5 years birth cohort before 1982. The dummy 
for tertiary graduates equals one for individuals who have tertiary degree, and zero denotes for individuals who have a 
secondary degree. “Individual controls” include age, gender, marital status, and having vocational training. “Household 
controls” include household head’s education, household head’s occupation, house ownership, types of dwelling, having 
access to take loan, place of residence and region.  * p<0.10, ** p<0.05, *** p<0. 


