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Teachers’ Monitoring and Schools’ Performance: 

Evidence from Public Schools in Pakistan 

Abstract

This paper evaluates the impact of an innovative monitoring system on teacher attendance and 

school performance in Pakistan. In 2014, the government in Khyber Pakhtunkhwa province 

introduced the Independent Monitoring Project aiming at increasing teacher attendance in 

primary and secondary public schools by distributing to the government-hired monitors smart 

phones with a special data collection software installed. Our analysis is based on a difference-

in-differences approach using the country wide Annual Status of Education Report from 2012 

to 2016. Our findings suggest that monitoring of government schools has increased teacher 

attendance by 7.5 percentage points in the first year of intervention. But the positive effect 

wears off to 2.7 percentage points in the second year. Child attendance and test scores also 

increased in the first year, but in the second year they disappeared. Especially, in the first year, 

the monitoring system improved students’ math, reading, and English test scores by 0.13, 0.14, 

and 0.15 standard deviation, respectively, if they are grades 1-5. This result suggests that 

teacher attendance has an important role in delivering better student outcomes, but that 

monitoring should be coupled with appropriate incentive mechanism in order to have a lasting 

impact.

Key Words: Schools Monitoring, Teachers Attendance, Learning Achievement
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1. INTRODUCTION

The recently developed “Sustainable Development Goals (SDGs)” emphasizes the need for 

more rigorous efforts through empirical findings that suggest feasible courses of actions to 

improve teaching quality and children learning achievement (UN SDGs, 2016). Despite some 

success in children enrollment, the overall quality of education especially at primary and 

secondary levels has remained the lowest in South Asia (e.g. India, Pakistan, Bangladesh etc.). 

Recently, a countrywide survey on educational attainment in India finds 44 percent of the 

children aged 7–12 cannot read a basic paragraph, and 50 percent cannot do simple subtraction

despite increased school enrollment(Banerjee et al., 2007). According to Annual Status of 

Education Report (ASER-Pakistan) which reveals important trends each year covering over 

255,000 children from 144 districts, Pakistan continues to be in a state of education emergency 

and learning lies at the heart of it. This is evident from its recent report showing that 52% 

children in grade 5 could read at story level dipping from 55% in 2015. Similarly, for English 

it was 46% (49% in 2015) and for arithmetic it was 48% compared to 50% in 2015 (ASER, 

2016). In similar circumstances, as Banerjee (2007) suggests, policies that only increase school 

enrollment may not guarantee learning outcomes. Recent evidence also supports the idea that 

interventions that only focus on school participation might not improve test scores for the 

average student (Abdulkadiroğlu et al. , 2018; Attaullah & Malik, 2015; Burde & Linden, 2013; 

Duflo et al., 2007; Munene, 2015).

One important component of school environment is the presence of teachers that influence the 

overall performance of children (Banerjee & Duflo, 2009; Glewwe & Kremer, 2006). Teachers’ 

absence has been a widespread problem in developing countries particularly in far-flung rural 

areas. Recent studies in education research document evidence that increased absence rate of 

teachers is strongly related with school and children performance(Banerjee & Duflo, 2006; 

Banerji et al., 2013; Kremer et al., 2006; Duflo & Hanna, 2005). A number of factors can be

found responsible for increased absenteeism such as distance from school, lack of appropriate 

incentives(Scott & Wimbush, 1991), ineffective monitoring(Duflo & Hanna, 2005) and other 

socio-economic factors(Alcázar et al., 2006). One of the important sources of differential 

teachers and schools performance is the type of monitoring and administrative oversight of 

schools and the resulting reward and penalty system. For example resources may be spent on 

hiring and payment to teachers who are absent from their schools such as the presence of ghost

schools(Glewwe & Kremer, 2006). According to ASER (2015), teachers' presence was one of 

the big factors to account for differences across learning outcomes across public and private 

schools in Pakistan. Also, there has been increasing focus by practitioners and development 

researchers on the teaching quality and punctuality that has significant direct and indirect 

effects on children performance(Duflo, 2007; Munene, 2015). Literature on teacher’s 

performance indicates that teacher incentives and other interventions have larger impact in low 

performance settings (Murname and Ganimian, 2014). However, considering the high 

absenteeism in developing countries, incentives alone may not work unless coupled with 

effective supervision of teaching staff particularly in rural areas. For example, in Pakistan’s 

Punjab province, a public-private partnership program that offered bonus for teachers, had 

limited effect on children’s test score because such incentives were not effectively linked with 

students performance (Barrera-Osorio and Raju, 2010). Similarly, incentivizing the 
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administrative staff such as headmasters in schools without effective monitoring mechanism 

may not improve teachers attendance and children learning (Kremer and Chen, 2001; CDPR, 

2014). With regard to effectiveness of monitoring methods, previous studies suggest different  

ways of supervision such as strengthening administrative oversight and community-based 

supervision to ensure better teachers’ attendance(CDPR, 2014; Muralidharan et al, 2014). 

Teachers failure to attend schools is mainly due to the lack of capacity of administration(e.g 

principle) and the beneficiary(children or local community) to monitor and penalize 

absence(Duflo & Hanna, 2005). Although, the headmasters have power to penalize absence by 

rules, nevertheless, by virtue of their close relationships with teachers (who generally belong 

to the local community), they are unable to enforce penalty or report absence to the higher 

authorities. Resultantly, the higher authorities in governments who are responsible for decision 

making, lack the real reporting of data from far-flung rural areas or get manipulated record 

about schools and teachers presence. 

A number of reforms initiatives have been proposed for developing countries that can 

maximize the quality of learning of enrolled children, reduce dropout ratio and attract out-of-

school children(Robert, 2005). The main focus of these studies remains both on the demand 

and supply side of education such as provision of educational facilities, widening access to 

education and increasing enrollment in schools etc.(Banerjee & Duflo, 2009; Jones, & Rajani, 

2014; Raikes, 2016). With regard to teachers’ availability in schools in developing countries, 

few studies have attempted to investigate the effectiveness of different policies that are targeted 

at schools or teachers’ supervision. These include teachers’ incentive programs such as 

providing incentives based on exam score of children, direct monitoring of teachers 

performance through camera coupled with high-powered incentives and community-controlled 

interventions etc.(Alcázar et al., 2006; Duflo & Hanna, 2005; Scott & Wimbush, 1991). The 

World Development Report suggests the expansion of community-based monitoring of schools 

that might strengthen the flow of information between community and school administration 

and effectively involving community in hiring, firing and payment or transfer of teachers 

(WDR, 2018). However, contextual evidence on community-based monitoring reflect less 

effectiveness of such programs particularly in rural areas (Banerjee and Duflo, 2005; Kremer 

& Vermeersch, 2005). One important factor in this cases is the awareness of local community 

or average education level that might influence the community response to teachers’ 

unavailability. In other words, given the overall low education level in the community (more 

often in developing countries), it is less likely that local people will realize the  consequences 

of teachers’ absence and its effect on children learning. While much has been researched about 

significance of teacher’s availability and school facilities, less is known about how to increase 

teacher’s attendance especially in rural and remote areas in an effective and cost efficient way. 

This paper takes advantage of data collected by the Annual Status of Education Report

(ASER)-which is similar to Pratham in India and Uwezo in Africa-, to attempt a natural 

experiment on a recently introduced government-schools monitoring project by the KP 

government in Pakistan. We attempt to find a comparable administrative unit that has not been 

affected by the policy yet shares similar socio-economic and demographic characteristics 

across the border with the treated administrative unit. 
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The results discussed in this research suggests a number of practical and methodological 

insights. First, school performance in terms of teacher’s attendance and school facilities can be 

increased by increasing monitoring of schools using professionally trained monitors and 

adaptation of latest technology. Second, evidence support the idea that improving schools 

performance affect parents and children behavior in terms of sending children to schools and 

attending schools respectively. Earlier studies based on natural experiments and randomized 

evaluations find mixed results on the effectiveness of monitoring vis-à-vis indirect incentives 

and rewards system in government policies on children’s learning outcomes in developing 

countries. Third, given the weak public education system in developing countries, monitoring

of schools and teachers should be coupled with appropriate incentive/punishment mechanism

in order to have a lasting impact on children performance. Finally, we argue that there is scope 

for the use of nationally representative surveys in conducting natural experiments for assessing 

the impact of education programs carried out by sub-national governments in developing 

countries. 

The following section gives a brief account of the education system in Pakistan, its short history

and major problems that hinder the road to achieving quality education. The 3rd section 

provides a detailed description of the monitoring program and its implementation procedures. 

Section 4 outlines theoretical framework in the light of previous works. Experimental design 

and its key conditions are discussed in section 5. Section 6 describes the data, Section 7 details 

the empirical strategy followed by results and discussion in section 8. The last section 

concludes. 

2. GAPS IN PAKISTAN’S EDUCATION SYSTEM  

Being the sixth largest country in the World, Pakistan inhabits population of around 210 million 

of which 64% is below the age of 30 (UNDP, 2018). Despite significant decline in the fertility 

level in recent years, Pakistan's population is still growing at a rate of 2% per year, highest in 

South Asia (WB, 2018). According to Burki (2005), those less than 18 years old will account 

for about 50% of total population in 2030. This represents a big challenge as a significant 

proportion of young people will be poorly educated and inadequately skilled in case the 

successive governments fail to launch and implement ambitious education reforms. 

To understand the structure of education system in Pakistan, it is important to dig into its history 

that started in the late 1940s. For the first 25 years (1947 to 1970), Pakistan's education system 

was relatively efficient, not much different from its neighboring India. Dominated by public 

sector, education departments in provinces were responsible for administering primary and 

secondary schools and colleges with a public sector teachers training schools and colleges. For 

several decade, the number of private schools was not much within the system of education.  

However, after the denationalization in 1990s, the private schooling become another major 

source of education at the lower level particularly for the elite class of society. Currently, the 

large public education system starts with primary schools at the lower level (0 to 5 grades), 

then secondary and high schools, and autonomous public funded universities at the higher level.  

Over the years, the amount of budget spent on public education has been one the lowest 
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compared to other countries for various reasons. According to the World Bank’s latest 

estimates, Pakistan spends nearly 4.9% of its GDP on education with about 30% spending on 

primary education (WB, 2016).  According to Pakistan’s Economic Survey, the overall literacy 

rate is 58% with male 70% and female 48% (MOF, 2017). In other words, nearly one-half of 

the women cannot read or write while this gap is much higher in rural areas. Solutions proposed 

for reforming the public education include incentives for parents and children, increasing the 

proportion of public resources going into education sector, diversion of more funds towards 

primary schooling and investment in teachers’ training and improving the quality of schools 

and curriculum(Robert, 2005).

Pakistan continues to suffer from slower growth in key socio-economic indicators reflected by 

the human development report as compared to its neighboring countries such as India and 

Bangladesh (UNDP, 2016). Low education quality, both at primary and secondary level is at 

the centre of many problems that the country face in almost all regions. According to a study 

by International growth Centre (ICG), in Khyber Pakhtunkhwa(KP) province (the focus of this 

paper) in 2012-13, only 63% of 4-9 years old children were enrolled in schools with a much 

lower (56%) female enrollment(CDPR, 2014). For higher grade, the net enrollment is even 

worst. For example, for middle schools, the net enrollment was hardly 40% reflecting a 

significant dropout or no-enrollment during the middle school age group (11 to 15 years).  

Similarly, teacher’s absenteeism rate was 16% for primary, 21% for middle, and 17% for high 

schools indicating unavailability of teaching service at a critical school age. With regard to 

learning achievements, the entire country including KP province faces alarmingly low level. 

Out of surveyed enrolled children, only 40% of grade-5 children could answer the second-

grade level mathematics and language questions. From the supply side of education, the KP 

province employs nearly 55% of the civil servants in education department with a significant 

number of teachers. For example, teachers make up at around 75% of the 180,000 employees 

overall in elementary and secondary education department. To what extent this chunk of 

employment has been effective is the policy question that motivates this study. 

Recently, as part of the constitutional amendments, Pakistan has devolved most of 

administrative and fiscal decision making to the provinces. In this devolved setting, provinces 

are autonomous in reforming their education sectors to improve the dismal conditions of 

schools and teachers quality and children learning. The establishment of an Independent 

Monitoring Unit (IMU) is one such initiative taken by the provincial government of Khyber 

Pakhtunkhwa (KP) province that aims at monitoring teachers and schools performance through 

trained monitors equipped with smart-phone aided facility(section 3 provide more details on 

IMU). According to ICG's analysis on the IMU school level data in 2014, there was significant 

variation in teacher’s attendance and student attendance rates at the primary and secondary 

level. Also, large variation in school size measured as enrollment of children and teachers-

students ratio were identified. Exploiting this variation, the same study by applying a statistical 

model, finds significantly positive effect of teachers attendance and school infrastructure on 

the children enrollment rates. With the exception of seven districts-in hard areas1- where 

                                                            
1 Currently, seven districts e.g., Kohistan, Battagram, Tor Ghar, Dir Lower, Dir Upper, Shangla and Tank have 
been identified as “hard areas” for girls’ schools(CDPR, 2014)
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additional incentives are offered, the KP government has a uniform incentive structure for 

teachers similar to other provinces of Pakistan. Moreover, to improve girl’s education, the KP 

government gives additional allowances for female education supervisors to increase their 

inspections to schools. Similarly, to attract girls enrollment, the KP government offers stipend 

program for secondary students for selected districts2 with low enrollment. Also, in two 

districts, special scholarships are offered for girls for their enrollment in schools (e.g Kohistan 

and Torghar). A detailed review of the KP government civil service rules carried out by ICG's 

research shows the presence of a number of direct and indirect incentives for improvement in 

teacher’s attendance and students learning(CDPR, 2014). However, these incentives were not 

properly linked with government objectives of improving education outcomes. The review 

further finds that promotion and up-gradation procedures, performance evaluation and transfer 

policies were not realistically linked with teacher’s attendance measurements or student 

performance in exams, suggesting the need for a more objective criteria for measuring teacher’s 

performance. 

3. PROGRAM DESCRIPTION

In struggle for quality improvement in education sector, in 2014, the Khyber Pakhtunkhwa (KP) 

provincial government took an important initiative of establishing a landmark project, 

Independent Monitoring Unit (IMU) for monitoring teachers and schools performance through 

trained monitors equipped with smart-phone aided facility. The project was aimed at 

monitoring and data collection for over 28000 public sector primary and secondary schools in 

the province. The basic objective of the IMU was to ensure presence of teachers through 

effective monitoring besides collection and compilation of data on basic schools facilities such 

as electricity, boundary wall, toilets, and furniture etc. The specific objectives of the project 

included, collection of data on the presence of teachers in school, number of children enrolled, 

schools facilities, availability of school administration and other school related information. 

Lunched formally in April 2014, the IMU’s mandate was to monitor over 28000 schools with 

over   121,618 government appointed teachers across the province. The implementation of IMU 

project needed quite laborious work as the KP province is geographically characterized with 

rugged terrain and dispersed population in rural areas. Also, over the last 18 years, the 

education sectors in KP province and it’s neighboring federally administered tribal areas, have 

been a direct target of terrorism resulting into destruction of hundreds of schools particularly 

girls school and killing of several teachers including female teachers. The IMU program 

conducts monitoring using both human efforts and technology for keeping external control 

while dealing with shirking teachers and school administration. 

The IMU hired 550 Data Collection and Monitoring Assistants (DCMAs or monitors) and 

subsequently appointed them in every district of KP province. Their job is to visit randomly to 

government schools located within the assigned administrative clusters3 (at least one time per 

month to each school). The assignment of clusters rotate clock-wise on monthly basis to 

                                                            
2 These low enrollment districts of KP include Hangu, Peshawar, Bannu, Lakki, D.I Khan, Shangla and Nowshera
3 Generally, a district is divided into 10 to 30 clusters(depending on the population of schools and gender) 
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minimize the possibility of relationship-bias. For example, the monitor who inspected cluster-

A in January, will inspect cluster-B in February and so on.  Each DCMAs are required to visit 

at least 3 to 4 schools every day in schooling-hour to collect data. They are not allowed to share 

any prior information with schools or teachers about their scheduled visits. Upon inspection of 

the school, DCMAs are required to send attendance status of teachers (confirmed with their 

thumb-impression) to the central office through GPRS system installed in their smart-phone. 

The performance of DCMAs is in turn supervised by the District Monitoring Officers (DMOs) 

appointed one for each district across the province (H. Altaf4, interview, October 2018). The 

IMU operation is based on IT application by trained monitors following a structured protocol 

provided by the provincial independent monitoring authority. The DCMAs collect data by 

physically verifying various school-based indicators after visiting the school in his/her 

designated area. The DCMAs then upload the information directly to the database of IMU 

using a prescribed questionnaire designed by the Elementary and Secondary Education 

Department (E& SED) of the KP province. The DCMAs use a special android application for 

conducting various checks and filter techniques to ensure provision of accurate data. The data 

sent by DCMAs to the database is further analyzed by IMU’s IT team using various statistical 

tools to help make incentive (reward and punishment) decisions and take other necessary 

actions. So far, according to IMU officials, prizes worth 220 million Rupees have been 

distributed under the Teachers Incentive Program (TIP) among teachers that have higher 

attendance record. The IMU data was utilized in deciding on TIP criteria. However, with regard 

to penalty of low performing teachers, there is no such record of punishment or any decision 

whatsoever.  

                                                            
4 A personal Interview was conducted online with Mr. Ataf Hussain, IMU official at District Shangla of KP 
Province to obtain information about the organizational structure and job description of IMU monitors and their 
appointment methodology.  
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Figure 1: District wise Map of KP and FATA (Edited from commons.wikimedia.org)

So far, the government reports suggests that teachers attendance and punctuality have improved 

significantly ever-since the launch of the IMU, however, there is no empirical evidence about 

the impact of the extent to which the IMU has increased teachers attendance and the students’ 

academic performance. This proposed research therefore will be a significant contribution 

towards genuine evaluation of this project.

4. EXPERIMENTAL DESIGN 

This study aims at estimating the effect of the IMU program introduced by the KP provincial 

government in Pakistan on the school quality measured in the form of teacher’s attendance on 

one hand, and on children learning outcomes measured through ability tests in three subjects 

e.g reading, math and English, on the other hand. To do so, it is important to use a model that 

truly identifies the causal effect of the IMU program. Literature on impact evaluation

methodologies suggests several tools to estimate the impact of a policy intervention in 

education sector on student’s achievement and school quality(Abdulkadiroğlu et al., 2018; 

Alcott & Rose, 2015; Attaullah & Malik, 2015; Burde & Linden, 2013; Card & Krueger, 2000; 

Croke, 2014; Duflo, 2007; Duflo et al., 2007; Munene, 2015). The focus of these studies is to 

know the likely impacts of various policy interventions on students’ academic achievements. 
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Recently, randomized control trials (RCTs) have been considered the most effective design to 

find causal effect particularly in poor developing countries. For example incentive program 

linked with teachers presence measured through camera photograph with children in randomly 

selected schools in India by Duflo & Hanna (2005) finds reduced teachers attendance 

significantly and improved test score. Similarly, in a randomized trial in Nicaragua, radio 

instructions had significant impacts on pupils’ math score (Jamison et al., 1981). In Kenya, 

randomized experiment of provision of school meals were was found to have positive impact 

on test score as long as teachers were well trained (Vermeersch & Kremer; 2004). In a remedial 

education program in urban India that focused on improving learning environment in 

government schools, increased test scores was observed at a reasonably low cost (Banerjee et 

al., 2004). Also in India, a computer-assisted learning program suggest potential positive 

impacts on students’ learning achievement (Banerjee et al., 2004). However, besides other 

challenges such as implementation etc., one of the big limitations associated with such 

experiments is their high cost of implementation. 

The second most credible design in recent impact evaluation literature is natural experiment. 

In the absence of random assignment of subjects, one can exploit variation caused by any policy 

change that is exogenous in nature.  In such cases, the simplest way of calculating the causal 

effect is using “difference-in-difference” (DiD) method, by comparing pre-program difference 

with the post-program difference between treated and untreated groups. Evidence from recent 

natural experiments in low and middle income countries suggests a positive impact of 

increasing school quality on students’ academic performance, despite extensive variation in 

different contexts. These experiments include(but are not limited to) impact evaluation of 

primary school environments on secondary school outcomes using data on Ethiopian Jews by 

Gould, Lavy & Paserman (2004) and impact of class size on student academic performance in 

Israel using Maimonides’ Rule by Angrist & Lavy(1999) etc. Results of natural experiments 

vary by context and by subjects owing to a number of reasons. For example, a natural 

experiment using Israeli data shows reducing class size raises reading score but not math score, 

while providing computers has no effect on academic performance (Angrist & Lavy 2002). 

One big challenge of such experimental designs is the availability of control (untreated) group 

that satisfies all conditions for an ideal comparison. For example, in the context, of school’ 

monitoring program, one needs to have schools that are not directly or indirectly affected by 

the policy targeted for specific treated schools.  Another challenge is to find schools that share 

similar characteristics with the treated schools before the intervention. In cases where the 

outcome variables between the treated and untreated subjects vary before the interventions, 

studies attempt to mitigate this challenge by adopting the common trend assumption 

conditional with availability of data. Recently, the two stage least square (2SLS) or 

instrumental variables (IV) is adopted as an alternative approach to estimating the impact of 

education policy interventions. According to this approach, a variable is used as an instrument 

which may or may not arise from natural experiment, but is correlated with the endogenous 

variable and uncorrelated with the unobserved factors that might affect the outcome variable 

(e.g child’s learning). In IV estimation, the common variation between the instrument and the 

endogenous variable is exploited in determining the estimate of the effect of certain variable of 
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interest (Angrist & Pischke, 2009; Wooldridge, 2013). Despite its convincing power in 

explaining education production function, finding a good instrument is often a challenge.  

While natural experiments (and randomized trails) are meant to create a pool of such results 

that are less likely to suffer from estimation problems, development economists stress the need 

for a much larger set of results on a more representative sample of population before reaching 

a general conclusion. Nevertheless, in many developing countries, natural experiments and 

randomized control tails are considered the most effective means for improving school quality 

through addressing the problems associated with weak teachers or teachers’ behavior(Glewwe 

& Kremer, 2006). Understanding the impact of policies that affect teachers’ behaviors is critical 

particularly in the context of developing countries that suffer from higher absenteeism. 

Considering the exogenous nature of IMU program introduction in KP province, Pakistan, we 

attempt to exploit an annually representative survey data produced by the Annual Status of 

Education Report (ASER) to conduct a natural experiment. Note that the purpose of collection 

of ASER data is unrelated with the IMU program in all aspects whatsoever. We attempt to find 

a comparable administrative unit that has not been affected by the policy yet shares similar 

socio-economic and demographic characteristics across the border with the treated 

administrative unit. We test this by conducting a pre-program trend analysis on all variables 

used in our estimations. We also supplement our results by adopting variation in our 

endogenous variable (teachers’ attendance caused by increased monitoring) as an instrument

to estimate the effect on children test performance. In doing so, one face the difficulty of factors 

that affect teachers’ quality such as punctuality, might also affect child’ test performance at 

home. However, we take advantage of the clear exogenous nature of the monitoring project. In 

other words, controlling for the effect of monitoring on teachers attendance, the IMU is less 

likely to affect children learning achievements through any other channel. 

5. DATA

Out main data source is the 5 years country wide Annual Status of Education Reports (ASER),

Pakistan survey, from 2012 to 2016. The ASER5 is frequently cited in reference to teachers 

attendance, children enrollment and attendance, learning ability, private school enrollment, and 

other key education indicators by renowned researchers (Jones et al., 2014; Banerji et al., 2013; 

Zaka & Maheen, 2010; French, Kingdon, & others, 2010). ASER is the large scale citizen-led, 

household based initiative managed by Idara-e-Taleem-Aagahi (ITA)-Pakistan in partnership 

with a number of governmental and non-governmental organizations, to provide reliable data 

on the status of primary and secondary education in all rural and few urban districts of Pakistan.

Each year, ASER conducts a comprehensive assessment of the state of learning, school 

performance, and other indicators of primary and secondary education throughout rural 

Pakistan. Mobilizing more than 10,000 volunteers each year, the survey covers 600 household 

in each of Pakistan’s 136 districts yielding a large national dataset of 81600 households and 

around 286,000 children per year. Table 1 provides year wise coverage of ASER data for KP 

province and FATA (the target of our study). The ASER household survey include learning 

                                                            
5 ASER survey is similar to Pratham in India and the Uwezo surveys in Africa.
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tests performed by children at home while a separate survey of the government and private 

schools is conducted in the sample villages. 

The ASER sampling framework is systematic and well designed. For example, each district is 

provided with a village list with population information given by the National Bureau of 

Statistics (NBS). In view of the variability of the key variables, population distribution and 

field resources, ASER selects a sample of 600 households from each district. Each district is 

further divided into 30 villages whereas 20 household are selected from each village. The 

ASER adopts tow stage sampling design. In the first stage 30 villages are selected using 

probability proportional to size (PPS) method. In the second stage, 20 household are selected6

from each of the 30 selected villages. Village is considered as the primary sampling unit, while 

household is treated as secondary sampling unit. Every year, the ASER retains 20 villages from 

previous year, 10 new villages are added and 10 villages are dropped from the previous year. 

In this way the ASER survey give us a “rotating panel” of villages for better estimates. With 

regard to schools selection, ASER choose at least one government school which is mandatory 

(could be more than one) and one private school form each selected village. The later ASER 

surveys also include urban regions in Pakistan (ASER, 2016, 2015, 2013).  

Table 1: ASER Survey Coverage (2012 to 2016) for KP and FATA 

Survey Coverage 2012 2013 2014 2015 2016

KP FATA KP FATA KP FATA KP FATA KP FATA 

No. of Districts 23 9 25 9 27 9 26 11 24 9

No. of Villages 688 270 763 265 789 270 769 330 704 270

No. of Households 13,702 5,375 15,144 5,271 15,663 5,369 15,032 6,544 13,807 5,390

No. of Children 41,003 18,529 46,877 18,722 49,473 18,743 46,045 22,890 41,804 17,753

Notes: The number of districts covered each year in KP and FATA are not equal because of two reasons. First, 

coverage in districts which were affected by military operation against terrorist such as Mohmand Agency was 

skipped in 2012. Secondly, districts where the ASER team couldn’t reach due to other administrative difficulties 

such as district Kohistan were also skipped. However, the number of missing district each year ranges between 1 

and 4.  

The primary strength of ASER dataset is its enormous sample size of children aged 5 to 16 

years, households, government schools and private school related information across all 

districts in rural Pakistan that provides a clear picture of the state of schooling across the

country. Secondly, the ASER learning tests which are well organized and carefully designed 

and conducted at home provide an opportunity to analyze children’s ability without any 

potential school bias. Testing at school often carries a potential bias when teachers push more 

competent students forward during the survey. This feature of ASER testing allows us to be 

more confident about the validity and findings on learning tests. Moreover, ASER household 

survey collects data on all potential child-related and household related socio-economic 

variables that might affect learning ability such as age, gender, enrollment status, school 

                                                            
6 ASER divides each selected village into four parts: Surveyors are required to start from the central location and 
pick every 5th household in a circular fashion till 5 households are selected from each part (ASER, 2016).
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status(government or private), current grade, tuition facility, house-condition and ownership

and parents’ education etc. Table 2 (a) and (b) shows the summary statistics of the 5 years 

ASER surveys annual data pooled form 2012 to 2016. The third important feature of ASER 

survey is its systematic coding of districts, villages, households, and children identification 

(IDs) that allows us to apply fixed effect models to control for any group-specific unobserved 

characteristics. Finally, the ASER provides sufficient baseline datasets on government and 

private schools information that enables us to conduct pre-treatment and falsification test on 

all relevant factors affecting school based and children related outcome.

Table-2(a) Government school summary (2012-16) pooled 

Government Schools Private Schools

Variables KP FATA KP FATA 

Primary School(1 to 5) 0.655 0.789 0.272 0.208

Middle School Type A(1 to 8) 0.048 0.093 0.286 0.283

Middle School Type B(6 to 8) 0.095 0.003 - -

High School Type A(1 to 10) 0.089 0.107 0.397 0.487

High School Type B(6-to-10) 0.157 0.005 - -

All other school types 0.006 0.004 0.042 0.021

Average Enrollment of Children 230.755 155.404 293.698 386.779

Average Children Attendance 153.279 131.903 261.715 342.863

Average No. of Teachers Appointed 7.724 5.019 12.885 11.696

Average No. of Teachers Present 6.687 4.477 11.145 10.788

Student teacher ratio 38.468 39.145 25.434 33.56

Teachers-Attendance Ratio 0.875 0.897 0.919 0.906

Children Attendance Ratio 0.844 0.826 0.867 0.889

Laboratory Available(yes=1) 0.208 0.086 0.405 0.346

Compute Lab Available(Yes=1) 0.065 0.035 0.263 0.096

Internet Availability 0.03 0.007 0.19 0.05

N  (No. of Schools surveyed) 3618 1386 1718 240

Notes: Table 2(a) use data from ASER government and private school surveys (pooled from 2012 to 2016).  Values 

on school types and facilities represent the mean percentage of the surveyed schools. Student-teachers ratio, 

teacher’s attendance ratio and children attendance ratio represents average ratio on corresponding variables. E.g. 

Teachers Attendance Ratio is calculated as no. of teachers present/total appointed teachers. Similarly, Children-

Attendance Ratio is calculated as no. of children present/total enrollment in the surveyed school. KP stands for 

Khyber Pakhtunkhwa Province representing the treatment group while and FATA represents the control group 

called Federally Administered Tribal Areas. Middle schools type B and Higher schools type B do not apply for 

private schools. 
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Table-2 (b) Children Related Summary-2012-16(Pooled) 

Variables KP FATA

Demographic Characteristics

Child Age 9.038 8.438

Gender(Female=1) 0.397 0.37

Child Enrollment Status

Child Enrollment Status(Yes=1) 0.755 0.675

Child Dropped Out(Yes=1) 0.034 0.033

Child School Type 

Child Enrolled in Government School(Yes=1) 0.518 0.481

Child Enrolled in Private School(Yes=1) 0.218 0.168

Child Enrolled in Other Schools(Yes=1) 0.014 0.024

Household Socio-Economic Conditions 

Private Tutoring(Yes=1) 0.072 0.05

House Ownership(Yes=1) 0.896 0.917

House Construction Weak(Yes=1) 0.348 0.544

House Construction Semi-Strong(Yes=1) 0.329 0.297

House Construction Strong(Yes=1) 0.323 0.158

Electricity Connection Available(Yes=1) 0.892 0.882

Mobile service Available(Yes=1) 0.841 0.687

TV Available(Yes=1) 0.512 0.406

Parents Information 

Father Age 41.004 39.38

Father Ever Attended the School 0.585 0.51

Father Years of Education 5.847 4.57

Mother Age 35.635 35.252

Mother Ever  Attended the School 0.274 0.117

Mother Years of Education 2.202 0.77

N    (No. of Children surveyed aged 3-16 years) 225202 96637

Notes: Table 2(b) use data from ASER- household survey (pooled from 2012-to-2016). All 

values represent the average percentages of the surveyed children.  KP stands for Khyber 

Pakhtunkhwa Province representing the treatment group while and FATA represents the 

control group called Federally Administered Tribal Areas. 

6. EMPIRICAL  STRATEGY 

The unique setting of the study area, the launching of monitoring program and ASER survey 

give us an opportunity to conduct a form of natural experiment.  It is known that the monitoring 

project, IMU, was launched in the middle of April, 2014 across all districts of KP province. In 

Pakistan, two months summer vacations are observed every year from mid-June to mid-August. 

During the vacations, teachers are not required to attend the schools. The ASER collects data 

in September each year. In this way, considering the starting date of the program and summer 

vacations, it is less likely that the ASER data collected in September, 2014 has captured the 

program impact after September. During the first two months at the outset of the program (from 

mid-April to mid-June), a large scale program is less likely to be fully operationalized. The 

figure 2 shows the timeline and ASER data collection from 2012 to 2016. Therefore we do not 
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have reason to consider year 2014 as a post-program period and expect the effect to take place 

in 2015. Given this context, our treatment period will consist of two years (2015 till 2016) in 

the selected districts. By the same token, considering 2014 as pre-program period is also likely 

to be bias our estimate, given the launch of the program in April, 2014. Although, we present 

results of 2014 as pre-program in for checking any possible difference (see annexures), we rely 

on 2012 to 2013 as pre-program in our main results.  

6.1.The Model

Our main outcome variables in the first stage is whether the intervention program has increased 

the teacher’s attendance in the government schools in the KP province.

We hold the following assumptions to carry out diff-in-diff analysis in the given settings: 

· The primary, and secondary education system in FATA is same as the KP due to the 

Exam Systems conducted by designated Education Boards7. 

· There is no significant difference in teacher’s attendance and children performance 

between KP and FATA before the IMU introduction. 

· FATA and KP share similar characteristics in terms of social, economic, geographic,

and cultural conditions and population density etc.  

· Our treatment period consists of two years (2015 till 2016) in the KP while the Pre-

Treatment period consists of three years from 2012 to 2014. 

We estimate the effect of monitoring program on school outcomes using the following equation: 

���� = �� + ��������������� + ������ +∝�+ �� + ���� ,      (1)

where ���� represents outcome on surveyed government school i in district d in time t; 

������������� is an interaction of treatment districts and post-year t (e.g. �������������=1 

if school i belongs to district d of KP province & t = 2015 or 2016 and �������������=0  

otherwise; ���� �� Vector of School level controls; ∝� is the district fixed effect; �� is year 

fixed effect; and ���� is an error term clustered at village (=school) level.

                                                            
7 Education boards are constitutional bodies responsible for implementing school curriculum, conducting and 
supervising annual examinations and declaring results of government and private schools under the jurisdiction. 
All boards are located in KP province but consists of districts under its jurisdiction both in KP and FATA. In total, 
there are 8 Education Boards in KP province. 
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In a similar fashion the children test performance is estimated by the following equation: 

����� = �� + ���������������+������� + ∝�+ �� + �� + ����� ,         (2)

where ����� represents normalized test score of surveyed child i in district d in grade g at time

t; �������������� is an interaction of treatment district d and post-year t;

����� �� Vector of individual child related controls; ∝� is the district fixed effect; �� is year 

fixed effect; � is individual grades’ fixed effect; and ����� is an error term clustered at village 

level. 

6.2.  Pre-Program Trend in KP and FATA

We take the advantage of the pre-program data to test the common trend assumption - the 

outcome in treatment and control group would follow the same trend in the absence of the 

treatment. The results suggest that teacher’s attendance on average did not vary significantly 

between treatment and control before the policy was introduced. The same is true for children 

test performance. Table 3 (a) & (b) present the pre-program trends between KP and FATA on 

our main outcome variables, teacher’s attendance and children standardized test scores

respectively. The coefficient for interaction term(pre-program diff) shows that after controlling 

for observed factors such as school existing teaching quality, training quality, school age and 

size, the difference between KP and FATA in terms of teachers attendance ratio is not 

statistically significant in 2013 as well as in 2014. A similar common trend was observed

between KP and FATA on normalized test score of children as shown in table 3 (b). We observe

that, on average, coefficient of the interaction term of the normalized score for Reading, Math 

and English in lower grades (0 to 5) is not statistically significant indicating similar 

performance of KP children with FATA children in terms of these subjects. This is in line with 

previous studies that indicated lower performance of both KP province and FATA compared 

to the country-average in terms of basic reading ability at lower grades. With regard to 

education sector reforms, a close analysis of the recent government decisions in KP and FATA 

shows that during these five years period, there was no significant policy intervention other 

than education reforms that mainly focused on teachers attendance, school infrastructure and 

oversight(CDPR, 2014; Zaka & Maheen, 2010). In conducting pre-program analysis of 

children test performance, we control for all possible observed child-specific characteristics 

such as age, gender, parents education, household size and dummies for house ownership and 

facilities(see table 2(b) for description of control variables). We also conduct a pre-treatment 

analysis on upper grade children and including 2014 as pre-program (see Appendix III and IV 

for results). Overall, the trend is similar in all subjects except lower performance in normalized 

English score of children belonging to treatment province in upper grades.  
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Table 3 (a): Pre-Program Trend, Teachers Attendance Ratio[ Equation(7)]

Dep. Var:  Teachers Attendance Ratio Post=2013 Post=2014

Pre-Program Diff (Treatment*Post) 0.0264 -0.0201

(0.0230) (0.0173)

School Teaching Quality 0.0359 0.0327**

(0.0225) (0.0166)

School Training Quality 0.00330 0.0223

(0.0268) (0.0185)

Urban 0.160*** 0.0953*

(0.0587) (0.0554)

Old schools 0.00565 -0.00121

(0.0138) (0.0103)

School Size 0.0861 0.128***

(0.0579) (0.0423)

School Facilities YES YES

District FE YES YES

Year FE YES YES

Constant 0.706*** 0.745***

(0.0510) (0.0426)

Observations 1,933 2,967

R-squared 0.074 0.060

Notes: Table-1 reports Pre-Program difference between KP province (treatment) and FATA 

(control) on teacher’s attendance. Column (1) represent Post=2013 vs Pre=2012 while column (2) 

represent Post=2014 vs Pre=2012-13.  The outcome variable is the ratio of teachers present in 

school to the total appointed teachers. Variable Pre-Program Diff is a typical diff-in-diff interaction

of to-be-treated province (KP) and Post (year =2013 in column (1) and year=2014 in column (2)). 

Due to District and year fixed effect applied in each regression, we do not include variables for 

treatment and posts. Variables School Teaching Quality and School Training Quality are 

continuous variables showing the ratio of teachers with master’s degree and specific training level 

to the total appointed teachers in each school.  School Facilities controls include availability of 

water, boundary, toilet, library, playground, laboratory, computer and internet. School Size is a 

continuous variable representing the ratio of children enrolled in surveyed school to the school 

with highest number of enrolled children.  The data is taken from the ASER-Pakistan School 

Survey.  Standard errors clustered at village level are shown in parentheses. The unit of observation 

is the surveyed government school. Statistical significance at the 1, 5, 10% levels are indicated by 

***, **, and *, respectively.    
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7. RESULTS 

7.1. Program Impact on Government Schools Outcomes 

Table 4 (a) reports the main results of the monitoring program on the ratio of present teachers 

to total appointed teachers using basic OLS model in equation (7). We check the program effect 

using different post and pre-program-years to see any difference during post-program two years. 

Since most of the KP province and FATA contains rural areas, time-invariant district-specific 

factors such as school density (schools per km2) and district administration offices etc., might 

affect the outcome variable(see appendix-V for list of districts in KP and FATA). To overcome 

any time-invariant district-specific unobserved characteristics and time trend, we use district 

fixed effect and year fixed effect respectively throughout our regressions. Also considering the 

potential variation in teacher’s behaviors, we control for schools teaching and training quality, 

urban districts, history, size and a vector of school-related facilities. School teaching and 

training quality is measured as a ratio of teachers with master’s degree and professional training 

certificate to the total appointed teachers in the surveyed school. We represent schools’ history 

as a dummy of old schools with more than 50 years of establishment equals to one.  As 

suggested by previous studies, enrollment of children in schools might affect teachers 

attendance behavior (Koedel & Betts, 2007), we therefore control for school-size represented 

by enrollment. The role of school infrastructure in creating better teaching environment is well 

documented in education literature (Abhijit Banerjee & Duflo, 2006; Robert, 2005). We control 

for all school-related facilities surveyed by ASER (e.g. availability of water, boundary wall, 

toilet, library, playground, laboratory, computer and internet). 

Table 4(a) column (1) shows a significantly positive effect of the program on teachers’ 

attendance ratio in the year immediately following the program (e.g in 2015). Controlling for 

observable covariates such as existing school teaching and training quality, location, history, 

school size, and a vector of school facilities, the coefficient of the interaction term shows an 

increase of .067 percentage points in teachers’ attendance ratio in the KP province as compared 

to FATA. In other words, being exposed to the monitoring program, on average, teacher’s 

attendance in government schools is likely to increase by nearly 8 % in the first year of program 

implementation. This effect is larger given the mean value of the dependent variable (.881). 

Table 4(a) does not include 2014 data, considering it a transition period. (See Appendix VI) 

for results on 2014 as pre-treatment period).  Column (2) adds year 2016 as post-program 

period into our analysis. It can be observed that the program effect is not significant and has

been decreased by nearly half after two years of program implementation. The effect is 

however statistically significant at 5% when we include year 2014 in our analysis. Appendix 

Table 4(a) reports results after including year 2014 as post-program period.  

There could be several reason for decreasing effect of the program. First, the expected penalty 

(or reward) as a result of IMU was not strictly observed despite certain absenteeism reporting 

by IMU. Secondly, as other studies observe, there could be a learning effect(Banerjee & Duflo, 

2006), from the perspective of teachers such as, teachers might have  learnt sources of shirking 

by establishing contacts with people who might observe visiting monitors on their way to 

schools. This can happen more likely in far-flung rural areas, where distance between schools 

and monitors’ place of residence is large. In their paper on addressing absence in India using a 
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camera photograph, Banerjee & Duflo (2006) contend the external control of monitoring by 

someone within the institutional hierarchy such as headmaster or principle due to possible 

collusion with teachers. Although the case of KP monitoring program does not have this 

problem of external control (e.g. monitors do not belong to schools, rather they are externally 

appointed and their jobs are rotated), yet we cannot rule out the possibility of shirking by 

teachers in areas where teachers’ distance from school is small. 

Although, the effect decreased in the second year, the overall impact of IMU program appears 

to bring immediate improvement in the teacher’s attendance over a large area. We check the 

robustness of our model [equation (7)] on various sub-samples of school levels such as primary 

schools (0-to-5 grades) and high schools (6-to-10 grades) and a reduced sample of districts 

bordering with FATA. There are sixteen districts in KP province which share border with any 

districts (agency) in FATA. The results (shown in section 8.3) are similar and follow the same 
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pattern as observed in table 4(a). Also, we conduct a falsification test using the private schools 

data on post-program period by running the same regression as table 4(a). Result of falsification 

test (shown in Appendix I) reflect no systematic difference in the teacher’s attendance pattern 

in private schools suggesting evidence in favor of IMU effect on government schools. 

7.2. Learning Achievements 

Even if monitoring increased teacher’s presence in schools, it is not clear whether increased 

teachers presence affect learning achievements. In other words, whether teachers teach once 

they decide to be in the schools is the question of our interest in this section. Several factors 

can be considered in explaining the mechanisms through which any potential impact of 

increased oversight of teachers and schools might influence the learning capacity of children. 

The basic theory behind hypothesizing the direct effect of teachers monitoring on children 

performance is the marginal cost of teaching after a teacher is present in school. Especially at 

lower level such as primary schools where the subject contents usually are not much difficult 

and where few teachers are appointed per school. We assume that after being present in school, 

at lower level, teachers generally tend to teach (they don’t want to shirk), hence children get 

benefited of the increased presence(Duflo & Hanna, 2005). In other words, getting teachers to 

schools may work effectively at the lower level schools. At higher level however, the marginal 

cost of teachers after being present in school might be higher given the subject contents 

difficulty at of higher grades such as maths, english and science subjects of 9th or 10th grade. 

Previous studies support the idea that developing countries such Pakistan and India, are 

suffering from the low teachers’ capacity at higher level(Robert, 2005). Secondly, parents 

might positively respond to a large scale oversight program in rural areas in terms of sending 

children to schools. Although, in many poor societies the opportunity cost of sending children 

to school is greater than the benefits of educating them, however, recent evidence on education 

status in South Asia confirm the slackness of parents towards sending children to school due 

to school quality or teachers absence rather than economic reasons(Banerjee & Duflo, 2006; 

Glewwe & Kremer, 2006). At higher grade level such as grade 9th and 10th, teachers’ absence 

from schools might affect parent’s response. For example the potential financial incentives for 

teachers when they (deliberately) avoid teaching at schools in order to increase the chances of 

private tutoring, might pose a financial challenge for parents (Glewwe & Kremer, 2006). The 

third source of monitoring effect on children performance might be the link between teacher’s 

attendance and children attendance. We check the program impact on children attendance 

measured as number of present children on the date of survey to the total enrollment in the 

school. Results shown in Appendix II suggest a slight increase (1.7% with 10 % significance 

level) in children attendance in year 2015, however, the magnitude is small indicating a subtle 

effect on the children attendance. The program effect on children attendance is not significant 

when we add 2016 as a post-program year. In either of our specifications, children attendance 

appears to be less affected (or unaffected) during the year immediately after the program. This 

is surprising as a number of studies document a strong association of teachers attendance with 

school participation and hence children academic performance. However, Glewwe & Kremer 

(2006) differentiate school participation from children attendance and argue that increasing 
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teachers attendance and school quality might increase participation which means giving more 

time to school related tasks rather than mere attendance. Finally, governance reforms such as 

monitoring that target school quality appear to hold more promise than simply providing 

monetary incentives to teachers based on test scores. For example, threat of a top-down audit 

significantly reduces corruption (Olken, 2004) and teachers at schools that were inspected more 

often resulted in reduced absence (Chaudhury et al., 2005b). However, there are limited 

evidence that externally controlled monitoring when coupled with clear and credible threat of 

punishment induces “good” teaching behavior at school.

We turn to our second outcome of interest, children test performance to see the direct effect of 

the monitoring program on the test performed by enrolled children at home. We follow Glewwe 

& Kremer (2006) to obtain the reduced form relationship using model (8) [equation (6)] in 

estimating normalized test performance in three different subjects e.g Reading, Mathematics 

and English. With regard to the level of difficulty, the ASER test questions8 for each subject 

are designed to measure the very basic Learning, English and Math ability in view of achieving 

SDG indicator 4.2.1(ASER, 2016). According to ASER reports, the survey is pitched to grades 

2 and 3 competencies only, corresponding with the SDG indicators for tracking learning at the 

lower primary level. The survey procedure in ASER annual publications also confirms the low 

difficulty levels of tests. In addition to that, ASER data survey also include three additional

questions(called bonus questions) for reading, two bonus questions related to math and one 

additional question related to english. Although, these additional questions might still be easier, 

we attempt to utilize them to construct normalized test variable for upper grade children (See 

Appendix X for details on the procedure of ASER test questionnaire). In their paper on ASER-

(Pratham), India, Banerji et al., (2013) describe that children of grade 3 onwards have no 

difficulties in completing all questions asked by ASER survey. Nevertheless, in view of the 

extremely discouraging learning status reported by different organizations in Pakistan over the 

last few years, we rely on the ASER’s basic test questionnaires (five questions each subject) 

for lower grade children to gauge the ability level of enrolled children. We aggregate the 

individual dummies for each of five questions in each subject to construct a raw score for each 

surveyed child and subsequently normalize9 by year, district and individual grades to obtain a 

reliable measure of test score. A similar procedure was adopted for ASER bonus questions to 

create normalized test score for children enrolled in higher grade children (see Appendix VI 

and VII) for upper grade children and including year 2014 as pre-treatment. 

Table 4(b) reports the direct program effect on the normalized test score for lower grade (0 to 

5) enrolled children using 2012 and 2013 as Pre-Program. For simplicity purpose, we only 

report coefficients of the interaction term of KP and Post to show the differential effect of the 

treatment after the program. Previous literature on learning outcomes documents effects of

factors such as individual characteristics, parent’s education and household characteristics on 

the learning performance of children(Abdulkadiroğlu et al., 2018; Azam et al., 2016; Banerjee 

                                                            
8 The ASER HH survey contains five basic questions ranging from low difficulty to higher difficulty. For example, 
for reading five test dummies are whether the surveyed child is at Beginners level, can read letters, can read words  
can read sentences, can read story. Similar procedure is adopted for mathematics and English questions. 
9 After constructing the raw score, we standardize the score as:  z=

(���)̅

�
  where, � a̅nd � are the mean and 

standard deviation of the test score by each individual grade. 
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et al., 2007; Croke, 2014; Jackson, 2009; Raikes, 2016). We therefore control for individual 

child-specific characteristics, parents education and household characteristics along with 

district fixed effect and year fixed effect. The first three columns report the program effect on 

the Reading, Maths and English test scores normalized by year, district and individual grade 

for year 2015 as post-program. The last three columns report the two years (2015 & 2016) 

program effect on normalized test score of lower grade children. We observe a significantly 

positive effect of the IMU program on the enrolled children performance in maths and English 

while positive (but not significant) effect in reading. Conditional on child-specific controls, 

parent’s education and household characteristics, on average, being in the KP province 

increases a child’s normalized test performance by 0.07 stand deviations (SD) points in 

Reading, 0.13 SD points in Maths and 0.11 SD points in English. Adding 2016 s post-program 

year into analysis shows that there is not significant direct effect on IMU on children test 

performance. We also check the direct effect of the program on higher grade (6 to 10) children. 

The results are reported in Appendix table A4 (b). Since, data on the higher grade related 

questions was not available in year 2012, therefore, we report the results of higher grade 

children in table A4 (b) which include 2014 as pre-program period.  Though significant at 10% 

level, the program effect is positive for higher grade children in Reading bonus question and 

English bonus questions. This decreasing effect of program on higher grade children is 

consistent with earlier findings by Banerji et al., (2013) on the difficulty level of the ASER-

India test questions. In estimating results for table 4(b) and table A4 (b), we only include 

children that are currently enrolled in government schools and for whom information on 

covariates were available.

After adding 2016 as post-program year, the direct program effect on lower grade children 

normalized test score is positive, but not significant indicating a decrease in the program effect 

during the year 2016. Nevertheless, for higher grade children (as we show in A4 (b), the 

program effect persisted, though slightly reduced. Controlling for child-specific factors, 

parents and household characteristics, and the district and year fixed effects, the IMU increases 

the ability of higher grade children to answer bonus-test questions by 0.127 SD points for 

Reading, 0.136 for English at 5% significance level. This decrease in effect of children test 

performance coincides with the decrease in teachers’ attendance in 2016 as reflected in Table 

4(a) giving more weight to the possibility of direct effect of the monitoring program on children 

test performance. One way of linking the decreasing effect on children performance might be 

the reducing efforts of teachers even though they are present in the schools. Previous evidence 

also does not rule out this possibility. In estimating the effect of teacher’s incentive program in 

Kenya, Glewwe, Ilias and Kremer (2003) find a short run increase in learning score and argue 

that gains in learning were only temporary and were not accompanied by increases in teaching 

efforts. 

Our results on the children test score provide evidence in support of the idea that absence of 

teachers at lower grades schools causes low learning achievements in developing countries. 

Thus addressing teacher’s absence at lower level could be a key policy direction that can 

positively affect learning achievements of lower grade children. Such a policy direction might
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combine external control monitoring tools such as IMU with appropriate incentives 
mechanisms to maintain the quality of schools on sustainable basis.  With regard to higher 
grade children, besides increased oversight, teacher’s education or training quality may be 
coupled with efforts of increasing their attendance to ensure learning achievements. 

7.3.Enrollment Status 

Enrollment has been widely used as a key indicator for achieving sustainable development 
goals particularly children of age 5 to 16 in developing countries. A large number of out-of-
school children in rural areas of Pakistan has been a persisting issue that requires effective 
solution. According to recent reports, Pakistan continue to suffer for low enrollment and high 
dropout rate at primary and middle level schooling(Gouleta, 2015). A review by the

International growth Centre (ICG), in Khyber Pakhtunkhwa(KP) province in 2012-13 shows
only 63% of 4-9 years old children were enrolled in schools with a much lower (56%) female 
enrollment(CDPR, 2014). For higher grade, the net enrollment is even worst. For example, for 
middle schools, the net enrollment was hardly 40% reflecting a significant dropout or no-
enrollment during the middle school age group (11 to 15 years).

To investigate the overall effect of the monitoring program on the enrollment status of children 
surveyed at home, we analyze ASER household survey data from 2012 to 2016. The ASER 
household survey include a variable on the status of children of age 5 to 16 asking whether they 
are enrolled in schools or not. We drop all those children enrolled in private school, madrassas 
or any other school to obtain reduced sample of children either enrolled in government schools 
or not enrolled. We attempt our diff-in-diff model for post-program year as 2015 only and 2015 
and 2016 together to see the two years post program effect. Results reported in table 4(d) are 
suggestive of the positive direct effect of monitoring program on gross government school 
enrollment. Since enrollment status is a binary variable, in addition to simple OLS, we also 

compare Probit model while controlling for all household and child related characteristic. The 
OLS estimates show that conditional on household characteristics, compared to FATA, the 
probability of a schooling age child to be enrolled in government school increases in the KP 
province by 3.1% in 2015 while this effect is not significant in 2016.  The Probit marginal 
effects imply that children in KP province have a 4% higher probability of getting enrolled in 
government schools compared to FATA. Both OLS and probit results points to the similar drop 
in the gross enrollment of children in 2016 consistent with a similar trend in the children’s test 
outcomes and teachers attendance. However this effect should be interpreted carefully due to 
two reasons. First, children enrollment mainly depends on school density. In other words, if 
the government schools (e.g per village) increases, it might increase the gross enrollment per 
village. Secondly, each year, there might be a linear trend in population growth coupled with 
increasing awareness campaigns by government and non-government organizations. While we 
are applying year and district fixed effect which controls for any district and year specific 
characteristics, we believe this effect may come through parents whose behavior might be 
affected by the government’s monitoring programs. Earlier studies also support the idea that 
parents positively respond to increasing school quality in terms of enrolling their children in 
schools(Berman et al., 2013; Glewwe & Kremer, 2006; Jones et al., 2014). Although these 
effects seems small, considering the status of out-of-school children in developing countries 
particularly Pakistan, the implication of these results is worth noticing. If a government policy 
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targeted at one aspect of schooling such as teachers’ attendance, affect the children enrollment 
and test performance simultaneously besides increasing school quality, then the cost of such 
policies should be evaluated in terms all three outcomes of education; school quality, learning 
outcomes and enrollment. 

Table-4(d): Program Effect on Children Enrollment Status 

Dep. Var: Enrollment Status[0,1] Post=2015 Post=2016 & 2016

OLS Probit OLS Probit
Monitoring(treatment*Post) 0.0317** 0.040* 0.00105 0.004

(0.0152) (0.017) (0.0133) (0.015)

Child Age 0.0352*** 0.039** 0.0363*** 0.040**

(0.000610) (0.001) (0.000547) (0.001)
Gender(Female=1) -0.196*** -0.217** -0.191*** -0.212**

(0.00494) (0.005) (0.00427) (0.005)

Mother Highest Education -0.00161*** -0.002** -0.00189*** -0.002**
(0.000555) (0.001) (0.000501) (0.001)

Father Highest Education 0.00553*** 0.007** 0.00587*** 0.007**

(0.000414) (0.000) (0.000366) (0.000)
House-ownership 0.0134* 0.016 0.00772 0.010

(0.00805) (0.009) (0.00735) (0.008)
HH- Size -0.00161*** -0.002** -0.00175*** -0.002

(0.000498) (0.001) (0.000487) (0.001)**

Urban Districts 0.0751** 0.095* 0.0655* 0.083

(0.0355) (0.044) (0.0352) (0.044)

HH-Facilities Controls Yes Yes Yes Yes 
District FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Constant 0.506*** 0.517***
(0.0212) (0.0179)

Observations 144,988 144,988 188,579 188,579
R-squared 0.195 0.190
Notes: Table 4 (d) reports the Post-program difference using diff-in-diff OLS coefficients and Probit marginal 
effects on the enrollment status of surveyed children. The first two columns reports results on the 2015 as post-
program only while the last two columns reports post-program period as 2015 & 2016. The pre-program period 
in all columns is 2012 to 2014 pooled. The dependent variable is a binary which child is enrolled in government 
school and zero otherwise. The sample does not include children that are enrolled in private or other schools. 
Variable Monitoring is an interaction of treated province (KP) and Post-program period. District and year fixed 
effect are applied throughout regression while controls for household facilities are also included. The data is 
from the ASER Household Survey.  Standard errors clustered at village level are shown in parentheses. The 
unit of observation is surveyed 3 to 16 year’s old child. Statistical significance at the 1, 5, 10% levels are 
indicated by ***, **, and *, respectively
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7.4. Robustness Checks

Table -5 : Program Effect on Only Primary Schools[ grade0 to 5 ]

Dep. Var: Teachers Attendance (1) (2) (3) (4)

Monitoring (Treatment*Post) 0.0657*** 0.0567*** 0.0243 0.0141
(0.0182) (0.0209) (0.0165) (0.0194)

School Teaching Quality 0.0384** 0.0396** 0.0298** 0.0316**
(0.0162) (0.0194) (0.0140) (0.0160)

School Training Quality 0.0243 0.00995 0.0263* 0.0175
(0.0165) (0.0208) (0.0147) (0.0172)

urban -0.0164 -0.0244 -0.0521 -0.0255
(0.0379) (0.0640) (0.0440) (0.0393)

old-school -0.00946 0.000805 -0.0104 -0.00386
(0.00986) (0.0115) (0.00936) (0.0107)

School Size(enrollment) 0.199*** 0.159** 0.145*** 0.105
(0.0550) (0.0693) (0.0549) (0.0683)

Schools Facilities Controls YES YES YES YES
District FE YES YES YES YES
Year FE YES YES YES YES

Constant 0.785*** 0.764*** 0.827*** 0.819***
(0.0355) (0.0405) (0.0307) (0.0342)

Observations 2,765 2,087 3,429 2,751
R-squared 0.082 0.090 0.066 0.065

Mean of the dep. Var: 0.887 0.887 0.887 0.887

Notes: Table-5 shows the main effect of the monitoring program on teacher’s attendance in 
government run primary schools only. Column (1) & (2) represent Post=2015 while Pre=2012-
2014 & Pre=2012-2013 respectively. Similarly Column (3) & (4) represent Post=2015-2016 
while Pre=2012-14(1) & Pre=2012-13 (2) respectively.  The outcome variable is the ratio of 
teachers present in school to the total appointed teachers. Variable Monitoring is a typical diff-
in-diff interaction of treatment (KP) and Post (for corresponding year). Due to District and year 
fixed effect applied in each regression, we do not include variables for treatment and posts. 
Variables School Teaching Quality and School Training Quality are continuous variables 
showing the ratio of teachers with master’s degree and specific training level to the total 
appointed teachers in each school.  School Facilities dummies include availability of water, 
boundary, toilet, library, playground, laboratory, computer and internet. School Size is a 
continuous variable representing the ratio of children enrolled in surveyed school to the school 
with highest number of enrolled children.  The data is taken from the ASER-Pakistan School 
Survey.  Standard errors clustered at village level are shown in parentheses. The unit of 
observation is the surveyed government primary school where children from grade0 to 5 are 
taught. Statistical significance at the 1, 5, 10% levels are indicated by ***, **, and *, respectively.    
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Table -6 : Program Effect on Reduced Sample of Bordering Districts

Dep. Var: Teachers Attendance (1) (2) (3) (4)

Monitoring (Treatment*Post) 0.0800*** 0.0779*** -0.00384 -0.000501
(0.0176) (0.0178) (0.0220) (0.0230)

School Teaching Quality 0.0462** 0.0313 0.0356** 0.0257
(0.0218) (0.0255) (0.0178) (0.0199)

School Training Quality 0.0127 0.000746 0.0123 0.00587
(0.0252) (0.0322) (0.0217) (0.0255)

urban -0.0478 0.0393 -0.0905** -0.0637
(0.0481) (0.0456) (0.0454) (0.0497)

old-school -0.00143 0.00716 -0.00723 -0.00390
(0.0130) (0.0151) (0.0122) (0.0140)

School Size(enrollment) 0.127** 0.0733 0.138** 0.100
(0.0556) (0.0634) (0.0542) (0.0627)

Schools Facilities Controls YES YES YES YES
District FE YES YES YES YES
Year FE YES YES YES YES

Constant 0.759*** 0.738*** 0.789*** 0.775***
(0.0385) (0.0427) (0.0348) (0.0378)

Observations 1,515 1,123 1,845 1,453
R-squared 0.056 0.070 0.050 0.056

Mean of the dep. Var: 0.871 0.871 0.871 0.871

Notes: Table-6 shows the main effect of the monitoring program on teacher’s attendance in 
government run schools using the reduced sample of districts bordering with FATA and FATA. 
Column (1) & (2) represent Post=2015 while Pre=2012-2014 & Pre=2012-2013 respectively. 
Similarly Column (3) & (4) represent Post=2015-2016 while Pre=2012-14(1) & Pre=2012-13 (2) 
respectively.  The outcome variable is the ratio of teachers present in school to the total appointed 
teachers. Variable Monitoring is a typical diff-in-diff interaction of treatment (KP) and Post (for 
corresponding year). Due to District and year fixed effect applied in each regression, we do not 
include variables for treatment and posts. Variables School Teaching Quality and School Training 
Quality are continuous variables showing the ratio of teachers with master’s degree and specific 
training level to the total appointed teachers in each school.  School Facilities dummies include 
availability of water, boundary, toilet, library, playground, laboratory, computer and internet. 
School Size is a continuous variable representing the ratio of children enrolled in surveyed school 
to the school with highest number of enrolled children.  The data is taken from the ASER-Pakistan 
School Survey.  Standard errors clustered at village level are shown in parentheses. The unit of 
observation is the surveyed government school. Statistical significance at the 1, 5, 10% levels are 
indicated by ***, **, and *, respectively.    
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8. CONCLUSION 

Initiatives to reduce teachers’ absenteeism in public schools range from offering incentives to 

instituting school committees to decentralizing of education to local government to externally 

controlled monitoring etc., however, to what extent such initiatives persist their effect and how 

much they affect children learning performance is rarely understood.  In this paper, we examine 

the effect of a large scale public schools monitoring program featured by the use of smart-

phone aided facility through professionally trained monitors in the KP province, Pakistan. We 

use five years data from a country wide annual representative survey to compare treated region 

with a neighboring untreated region that share similar characteristics in all aspects except the 

program. Our data consists a rich set of variables that allow estimation of education production 

function in the context of a purely exogenous intervention. Our findings suggest that 

monitoring of government schools through trained monitors equipped with smart-phone-aided 

biometric facility improved teacher’s attendance by nearly 8% in the year immediately 

following the program. However, this effect decreases by nearly half after two years of the 

program introduction. 

We also find the program’s direct effect on the enrolled children’s test performance at home. 

Enrolled children’s standardized Reading, Math and English ability in the monitored schools 

has improved significantly by 0.07, 0.13 and 0.11 standard deviations points respectively at the 

lower (0-5) grades. There is slight improvement in the standardized test performance of higher 

grade children. We also find a positive immediate effect of the program on the likelihood of 

school-aged children enrollment into government schools suggesting responsiveness of parents 

towards a large scale program.  

Our results on the children performance provide evidence in support of the idea that absence 

of teachers at lower grades schools causes low learning achievements in developing countries. 

Thus addressing teacher’s absence at lower level could be a key policy direction that can 

positively affect learning achievements of lower grade children. Such a policy direction might 

be combined with external control monitoring tools such as IMU with appropriate incentives 

mechanisms to maintain the quality of schools on sustainable basis. With regard to higher grade 

children, besides increased oversight, teacher’s education or training quality may be coupled 

with efforts for increasing their attendance to ensure learning achievements.  

Two broad implications can be derived from our results. First, incorporation of advanced 

technology in schools monitoring has a stronger effect on the teachers and children 

performance simultaneously. Such initiatives might have wide rage effects than the targeted 

outcomes. Secondly, how long such effects sustain, depends on complementary measures that 

links teachers performance with children performance.

9. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

Despite having a clear identification strategy, our work is subject to certain limitations. First, 

we use survey data that is collected on annual basis, and only capture the yearly inspections of 

schools. Using monthly data on teacher’s attendance might be more useful in evaluating any 
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differential effect between KP and FATA schools performance.  Secondly, we couldn’t access 

more detailed administrative data on the characteristics of monitors employed by IMU for more

in-depth analysis of the program. Data collected by IMU staff on teacher’s attendance and 

school performance might be useful for comparison of ASER data and IMU data. Thirdly, the 

test questions for higher-grade children might weakly represent their performance because of 

low standard of the questions designed by ASER. ASER’s test questions mainly target low 

grade children as shown in Appendix X. Although we utilize the bonus questions to create 

normalize test score for higher grade children, a more standardized design of test taken at home 

for higher grade children would be more useful in gauging children performance. Finally, 

establishing a systematic channel between teacher’s attendance and children performance is 

important despite our findings that monitoring program has directly affected children test score. 

Given the differential effect in 2015, future research might utilize two stage least square (2SLS) 

approach to for establishing a clear link between teacher’s attendance and children test score. 
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Appendix I

Table –A1: Falsification Test on Private School Data 

Dep. Var: Teachers Attendance Ratio Post=2015(a) Post=2015(b) Post(a) Post(b)

Monitoring (Treatment*Post) 0.000348 -0.0196 -0.0244 -0.0473
(0.0335) (0.0375) (0.0257) (0.0298)

School Teaching Quality 0.0348* 0.0239 0.0364* 0.0292
(0.0190) (0.0225) (0.0198) (0.0234)

School Training Quality -0.00510 0.00115 -0.00739 -0.00506
(0.0244) (0.0322) (0.0239) (0.0304)

urban 0.0166 0.0408 0.00401 -0.0332
(0.0297) (0.0311) (0.0276) (0.0407)

old schools -0.0232 -0.0260 -0.0262 -0.0276
(0.0198) (0.0220) (0.0193) (0.0214)

enrollment 0.0768* 0.0530 0.0874** 0.0718
(0.0402) (0.0507) (0.0395) (0.0488)

Schools Facilities Controls YES YES YES YES
District FE YES YES YES YES
Year FE YES YES YES YES

Constant 0.511*** 0.576*** 0.776*** 0.545***
(0.0267) (0.189) (0.0346) (0.0297)

Observations 1,674 1,292 1,944 1,562
R-squared 0.064 0.100 0.057 0.081

Notes: Table-A1 reports the falsification test of the monitoring program on teacher’s attendance using 
private school data.  We run the same specification of our main effect on the private school data to 
see any systematic trend in the teacher’s attendance of private school data. Column (1) & (2) represent 
Post=2015 while Pre=2012-2014(1) & Pre=2012-2013 respectively. Similarly column (3) & (4) 
represent Post=2015-2016 while Pre=2012-14(1) & Pre=2012-13(2) respectively.  The outcome 
variable is the ratio of teachers present in school to the total appointed teachers. Variable Monitoring 
is an interaction of treatment (KP) and Post (for corresponding year).  Due to District and year fixed 
effect applied in each regression, we do not include variables for treatment and posts. Variables 
School Teaching Quality and School Training Quality are continuous variables which show the ratio 
of teachers with master’s degree and specific training level to the total appointed teachers in each 
school.  School Facilities controls include availability of water, boundary, toilet, library, playground, 
laboratory, computer and internet. Enrollment is a continuous variable representing the ratio of 
children enrolled in surveyed school to the school with highest number of enrolled children.  The 
data is taken from the ASER-Pakistan School Survey.  Standard errors clustered at village level are 
shown in parentheses. The unit of observation is the surveyed private school. Statistical significance 
at the 1, 5, 10% levels are indicated by ***, **, and *, respectively.    
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Appendix II
Appendix Table –A2: Program Impact on Children Attendance in Government Schools 

Dep. Var: Children Attendance Ratio Post=2015(a) Post1=2015(b) Post(a) Post(b)

Monitoring (Treatment*Post) 0.0177* -0.00579 0.00873 -0.0168
(0.00973) (0.0116) (0.0103) (0.0121)

School Teaching Quality 0.0104 0.0166* -0.000394 0.00357
(0.00817) (0.00959) (0.00800) (0.00912)

School Training Quality -0.00269 0.00140 0.00139 0.00773
(0.00952) (0.0112) (0.00897) (0.0103)

urban 0.00428 -0.0510* -0.0215 -0.0434
(0.0258) (0.0293) (0.0229) (0.0276)

Old schools -0.00862 -0.00905 -0.00790 -0.00865
(0.00534) (0.00620) (0.00528) (0.00606)

Schools Facilities Controls Yes Yes Yes Yes
District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Constant 0.802*** 0.800*** 0.792*** 0.790***
(0.0186) (0.0214) (0.0170) (0.0190)

Observations 4,053 3,019 4,953 3,919

R-squared 0.095 0.125 0.092 0.112

Notes: Table-A2 shows main effect of the monitoring program on children attendance. Column (1) & (2) 
represent Post=2015 while Pre=2012-2014(1) & Pre=2012-2013 respectively. Similarly column (3) & 
(4) represent Post=2015-2016 while Pre=2012-14(1) & Pre=2012-13(2) respectively.  The outcome 
variable is the ratio of children present in school to the total enrollment. Variable Monitoring is an 
interaction of treatment (KP) and Post (for corresponding year).  Due to District and year fixed effect 
applied in each regression, we do not include variables for treatment and posts. Variables School 
Teaching Quality and School Training Quality are continuous variables which show the ratio of teachers 
with master’s degree and specific training level to the total appointed teachers in each school.  School 
Facilities controls include availability of water, boundary, toilet, library, playground, laboratory, 
computer and internet. The data is taken from the ASER-Pakistan School Survey.  Standard errors 
clustered at village level are shown in parentheses. The unit of observation is the surveyed government 
school. Statistical significance at the 1, 5, 10% levels are indicated by ***, **, and *, respectively.    
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Appendix III
Table A3 (b): Pre-Program Difference, Normalized Test Score [Equation (8)]

Normalized Test Score

Lower Grades-(0-to -5) Upper Grade (6 -10)

Reading Math English Reading Math English

Pre-Program Difference (KP*Post) -0.150** -0.0112 -0.0657 0.0218 0.0783 -0.334***

(0.0633) (0.0571) (0.0601) (0.0622) (0.0590) (0.0917)

Child -Related Controls Yes Yes Yes Yes Yes Yes

Parents Education Controls Yes Yes Yes Yes Yes Yes

Household Characteristics Dummies Yes Yes Yes

District FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Grade FE Yes Yes Yes Yes Yes Yes

Constant -0.443*** -0.00221 -0.0470 1.211*** 0.685*** 0.257

(0.0927) (0.0846) (0.0906) (0.134) (0.161) (0.186)

Observations 38,923 38,818 38,762 11,054 11,054 10,942

R-squared 0.068 0.062 0.069 0.115 0.111 0.116

Notes: Table 3(b) reports the pre-program difference using diff-in-diff estimates on the children test performance for Post=2014 vs Pre=2012 &

2013 using the ASER Household Survey data.  Standard errors clustered at village level are shown in parentheses. The unit of observation is 

surveyed 3 to 16 year’s old child enrolled in government school from Grade-0 to grade-5(first three columns) and grade-6 to 10(last three columns). 

The dependent variable is the test score normalized by grade. The pre-program difference is a typical diff-in-diff interaction of to-be-treated 

province (KP) and Post (which is equal to 1 if year==2014 and 0 if year=2012 or 2013). Fixed Effect on individual grade, District and year applied 

in each regression. Child-related controls include age, private tuition; parent’s education controls include, mother and father highest education in 

years; household characteristics include ownership, house condition, and availability of electricity, mobile and television facilities. Statistical 

significance at the 1, 5, 10% levels are indicated by ***, **, and *, respectively.    
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Appendix IV
Table -A4 (a) : Teachers Attendance Ratio[Equation(7)]

Dep. Var: Teachers Attendance (1) (2) (3) (4)

Monitoring (Treatment*Post) 0.0756*** 0.0665*** 0.0344** 0.0256

(0.0151) (0.0172) (0.0140) (0.0162)

School Teaching Quality 0.0344*** 0.0375** 0.0278** 0.0301**

(0.0125) (0.0150) (0.0111) (0.0127)

School Training Quality 0.0129 -0.00375 0.0167 0.00607

(0.0143) (0.0182) (0.0125) (0.0147)

urban -0.0303 0.0620 0.00645 0.0159

(0.0469) (0.0408) (0.0310) (0.0346)

old-school -0.00379 0.000548 -0.00650 -0.00469

(0.00785) (0.00919) (0.00751) (0.00863)

School Size(enrollment) 0.0945*** 0.0460 0.0789** 0.0368

(0.0357) (0.0448) (0.0351) (0.0433)

Schools Facilities Controls YES YES YES YES

District FE YES YES YES YES

Year FE YES YES YES YES

Constant 0.884*** 0.880*** 0.846*** 0.839***

(0.0295) (0.0302) (0.0344) (0.0350)

Observations 4,053 3,019 4,953 3,919

R-squared 0.066 0.075 0.054 0.055

Mean of the dep. Var: .883 .886 .881 .883

Notes: Table-4(a) shows the main effect of the monitoring program on teacher’s attendance. Column 

(1) & (2) represent Post=2015 while Pre=2012-2014 & Pre=2012-2013 respectively. Similarly 

Column (3) & (4) represent Post=2015-2016 while Pre=2012-14(1) & Pre=2012-13 (2) respectively.  

The outcome variable is the ratio of teachers present in school to the total appointed teachers. Variable 

Monitoring is a typical diff-in-diff interaction of treatment (KP) and Post (for corresponding year). 

Due to District and year fixed effect applied in each regression, we do not include variables for 

treatment and posts. Variables School Teaching Quality and School Training Quality are continuous 

variables showing the ratio of teachers with master’s degree and specific training level to the total 

appointed teachers in each school.  School Facilities dummies include availability of water, boundary, 

toilet, library, playground, laboratory, computer and internet. School Size is a continuous variable 

representing the ratio of children enrolled in surveyed school to the school with highest number of 

enrolled children.  The data is taken from the ASER-Pakistan School Survey.  Standard errors 

clustered at village level are shown in parentheses. The unit of observation is the surveyed 

government school. Statistical significance at the 1, 5, 10% levels are indicated by ***, **, and *, 

respectively.    
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Appendix V

Table A4 (b): Program Effect, Normalized Test Score [Equation (8)]

Normalized Test Score 
Lower Grades-(0-to -5) Upper Grade (6 -10)

Reading Math English Reading Math English

Monitoring (KP*Post) 0.130** 0.140*** 0.150*** 0.100* 0.0307 0.121*
(0.0524) (0.0478) (0.0508) (0.0594) (0.0561) (0.0707)

Child -Related Controls Yes Yes Yes Yes Yes Yes
Parents Education Controls Yes Yes Yes Yes Yes Yes
Household Characteristics Dummies Yes Yes Yes Yes Yes Yes

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Grade FE Yes Yes Yes Yes Yes Yes

Constant -0.431*** -0.0736 -0.0709 1.439*** 1.017*** 0.710***
-0.0779 -0.0703 -0.0751 (-0.124) (-0.13) (-0.149)

Observations 60,308 60,082 60,076 17156 17156 17059
R-squared 0.067 0.067 0.070 0.147 0.160 0.143

Notes: Table 4(b) reports the Post-program difference using diff-in-diff estimates on the children test performance for Post=2015 vs 
Pre=12-to-2014(pooled). The data is from the ASER Household Survey.  Standard errors clustered at village level are shown in parentheses. 
The unit of observation is surveyed 3 to 16 year’s old child enrolled in government school from Grade-0 to grade-5(first three columns) 
and grade-6 to 10(last three columns). The dependent variable is the test score normalized by grade. Variable Monitoring is an interaction 
of treated province (KP) and Post (which is equal to 1 if year==2015 and 0 if year=2012 or 2014). Fixed Effect on individual grade, District 
and year applied in each regression. Child-related controls include age, private tuition; parents education controls include, mother and 
father highest education in years; household characteristics include ownership, house condition, and availability if electricity, mobile and 
television facilities. Statistical significance at the 1, 5, 10% levels are indicated by ***, **, and *, respectively.  (See Appendix table A4 
(b) for complete regression results.)
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Appendix VI

Table A4 (c): Program Effect, Normalized Test Score [Equation (8)]

Normalized Test Score 
Lower Grades-(0-to -5) Upper Grade (6 -10)

Reading Math English Reading Math English

Monitoring (KP*Post) 0.0730 0.0221 0.0657 0.127** 0.0198 0.136**
(0.0474) (0.0440) (0.0461) (0.0506) (0.0490) (0.0618)

Child -Related Controls Yes Yes Yes Yes Yes Yes
Parents Education Controls Yes Yes Yes Yes Yes Yes
Household Characteristics Dummies Yes Yes Yes Yes Yes Yes

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Grade FE Yes Yes Yes Yes Yes Yes

Constant -0.355*** -0.0691 -0.0226 1.435*** 0.963*** 0.814***
-0.0724 -0.0672 -0.071 (0.107) (0.114) (0.129)

Observations 77724 77515 77509 21,744 21,744 21,373
R-squared 0.053 0.064 0.067 0.128 0.147 0.113

Notes: Table 4(b) reports the Post-program difference using diff-in-diff estimates on the children test performance for Post=2015 & 2016 
vs Pre=12-to-2014 (pooled). The data is from the ASER Household Survey.  Standard errors clustered at village level are shown in 
parentheses. The unit of observation is surveyed 3 to 16 year’s old child enrolled in government school from Grade-0 to grade-5(first three 
columns) and grade-6 to 10(last three columns). The dependent variable is the test score normalized by grade. Variable Monitoring is an 
interaction of treated province (KP) and Post (which is equal to 1 if year==2015 & 2016 and 0 if year=2012 or 2014). Fixed Effect on 
individual grade, District and year applied in each regression. Child-related controls include age, private tuition; parents education controls 
include, mother and father highest education in years; household characteristics include ownership, size, house condition, and dummies for 
availability if electricity, mobile and television facilities. Statistical significance at the 1, 5, 10% levels are indicated by ***, **, and *, 
respectively.    
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Appendix VII
Program Effect on Children Test Performance 
Table-A4(b): Normalized Test Score  [Post=2015 vs Pre==2012-14 ] 

Grade-0 to Grade-5 Grade-5 to Grade-10

Reading Math English Reading Math English
DiD(treatment*Post) 0.130** 0.140*** 0.150*** 0.100* 0.0307 0.121*

(0.0524) (0.0478) (0.0508) (0.0594) (0.0561) (0.0707)
Post(=2015, Pre=2012-14) 0.0310 -0.00182 0.00452 -0.246*** -0.119** -0.222***

(0.0478) (0.0418) (0.0450) (0.0496) (0.0494) (0.0630)
Treatment(KP) -0.169** -0.395*** -0.275*** -0.543*** -0.404*** -0.844***

(0.0850) (0.0787) (0.0819) (0.130) (0.117) (0.132)
Child Age 0.0847*** 0.0722*** 0.0674*** -0.00800 -0.0109 0.0157

(0.00814) (0.00749) (0.00737) (0.00828) (0.00854) (0.00969)
Mother Highest Education -0.00139 -0.00102 0.000449 -0.00220 0.000379 0.00317

(0.00238) (0.00214) (0.00229) (0.00296) (0.00258) (0.00311)
Father Highest Education 0.00103 0.00150 0.00161 0.00512*** 0.00410** -0.000725

(0.00157) (0.00155) (0.00158) (0.00177) (0.00176) (0.00221)
House-ownership 0.0737*** 0.0367 0.0219 0.0295 0.0228 0.0492

(0.0256) (0.0242) (0.0261) (0.0321) (0.0304) (0.0385)
Private Tutoring 0.196*** 0.154*** 0.160*** -0.00228 -0.0585 0.160***

(0.0407) (0.0380) (0.0426) (0.0428) (0.0451) (0.0435)
Electricity Availability 0.0136 -0.0412 -0.0542 -0.0325 0.0168 0.0892*

(0.0454) (0.0405) (0.0430) (0.0419) (0.0427) (0.0514)
Mobile service 
Availability 0.0848*** 0.0543** 0.0889*** 0.0975*** 0.0510 0.0840**

(0.0255) (0.0233) (0.0254) (0.0363) (0.0340) (0.0390)
TV availability 0.0241 0.0158 0.00277 -0.0299 -0.0432** 0.0207

(0.0191) (0.0184) (0.0186) (0.0221) (0.0210) (0.0240)
House condition 0.0375 0.0436 0.0497 0.0297 -0.0135 0.0581

(0.0331) (0.0320) (0.0321) (0.0412) (0.0381) (0.0456)
HH- Size -0.000153 0.00184 0.000509 9.57e-05 0.00170 0.00136

(0.00145) (0.00138) (0.00148) (0.00135) (0.00135) (0.00152)
District FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Grade FE YES YES YES YES YES YES

Constant -0.431*** -0.0736 -0.0709 1.439*** 1.017*** 0.710***
-0.0779 -0.0703 -0.0751 (-0.124) (-0.13) (-0.149)

Observations 60,308 60,082 60,076 17156 17156 17059
R-squared 0.067 0.067 0.070 0.147 0.160 0.143

Notes: Table A4 (b) reports the Post-program difference using diff-in-diff estimates on the children test performance for 
Post=2015 vs Pre=12-to-2014(pooled). The data is from the ASER Household Survey.  Standard errors clustered at village 
level are shown in parentheses. The unit of observation is surveyed 3 to 16 year’s old child enrolled in government school. 
The dependent variable is the test score normalized by grade. Variable Monitoring is an interaction of treated province
(KP) and Post (which is equal to 1 if year==2015 and 0 if year=2012 or 2014). Fixed Effect on individual grade, District 
and year applied in each regression. Statistical significance at the 1, 5, 10% levels are indicated by ***, **, and *, 
respectively
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Appendix VIII
Program Effect on Children Test Performance 
Table-A4(3): Normalized Test Score  [Post=2015 & 16 vs Pre==2012-14 ] 

Grade-0 to Grade-5 Grade-5 to Grade-10

Reading Math English Reading Math English
DiD(treatment*Post) 0.0730 0.0221 0.0657 0.127** 0.0198 0.136**

(0.0474) (0.0440) (0.0461) (0.0506) (0.0490) (0.0618)
Post(=2015, Pre=2012-14) -0.108** -0.256*** -0.235*** -0.119** -0.0562 0.126**

(0.0477) (0.0424) (0.0450) (0.0488) (0.0488) (0.0596)
Treatment(KP) -0.0447 -0.263*** -0.115 -0.418*** -0.215** -0.591***

(0.0755) (0.0735) (0.0750) (0.101) (0.0923) (0.102)
Child Age 0.0802*** 0.0673*** 0.0623*** -0.00715 -0.0115 0.00688

(0.00685) (0.00660) (0.00618) (0.00719) (0.00742) (0.00825)
Mother Highest Education 0.00250 0.000588 0.00310 -0.00231 -0.00128 0.00413

(0.00216) (0.00210) (0.00215) (0.00252) (0.00232) (0.00269)
Father Highest Education 0.00378*** 0.00419*** 0.00340** 0.00410*** 0.00342** -0.00337*

(0.00140) (0.00145) (0.00142) (0.00154) (0.00154) (0.00191)
House-ownership 0.0468** 0.0381* 0.00586 0.0230 0.0454 0.0613*

(0.0226) (0.0223) (0.0243) (0.0281) (0.0301) (0.0331)
Private Tutoring 0.277*** 0.249*** 0.266*** 0.0151 -0.0589 0.112***

(0.0371) (0.0397) (0.0399) (0.0345) (0.0402) (0.0382)
Electricity Availability 0.0166 -0.00693 -0.0377 -0.0308 0.0510 0.0587

(0.0374) (0.0340) (0.0359) (0.0380) (0.0422) (0.0439)
Mobile service 
Availability 0.0333 0.00955 0.0560** 0.0712*** 0.0277 0.0395

(0.0217) (0.0204) (0.0222) (0.0272) (0.0261) (0.0301)
TV availability 0.0205 0.0180 0.0189 -0.0140 -0.0524*** 0.0408*

(0.0169) (0.0169) (0.0169) (0.0195) (0.0186) (0.0209)
house_condition 0.0282 0.0302 0.0302 0.0453 0.0550 0.0655*

(0.0299) (0.0304) (0.0299) (0.0361) (0.0348) (0.0391)
HH- Size -0.00129 0.00193 0.000142 -0.000398 5.15e-05 -0.000119

(0.00146) (0.00140) (0.00148)
District FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Grade FE YES YES YES YES YES YES

Constant -0.355*** -0.0691 -0.0226 1.435*** 0.963*** 0.814***
-0.0724 -0.0672 -0.071 (0.107) (0.114) (0.129)

Observations 77724 77515 77509 21,744 21,744 21,373
R-squared 0.053 0.064 0.067 0.128 0.147 0.113

Notes: Table A4 (c) reports the Post-program difference using diff-in-diff estimates on the children test performance for 
Post=2015 & 2016(pooled) vs Pre=12-to-2014(pooled). The data is from the ASER Household Survey.  Standard errors 
clustered at village level are shown in parentheses. The unit of observation is surveyed 3 to 16 year’s old child enrolled in
government school. The dependent variable is the test score normalized by grade. Variable Monitoring is an interaction of 
treated province (KP) and Post (which is equal to 1 if year==2015 or 2016 and 0 if year=2012 to 2014). Fixed Effect on 
individual grade, District and year applied in each regression. Statistical significance at the 1, 5, 10% levels are indicated by 
***, **, and *, respectively
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Appendix IX

List of Districts in Khyber Pakhtunkwha and FATA

Federally Administered Tribal 
Areas(FATA)

Khyber Pakhtunkhwa (KP) Bordering 

FATA-Bannu Abbottabad No 

FATA-Lakki Marwat Bannu YES 

FATA-Peshawar Battagram No

FATA-Tank Buner No

Khyber Agency Charsadda YES

Mohmand Agency Chitral No

Orakzai Agency D.I.Khan YES

Bajaur Agency Hangu YES

FATA-Kohat Haripur No

Kurram Agency Karak YES

FATA-DIKhan Kohat YES

Kohistan No

Lakki Marwat YES

Lower Dir YES

Malakand YES

Mansehra No

Mardan YES

Mardan-Urban YES

Nowshera YES

Peshawar YES

Peshawar - Urban YES

Shangla No

Swabi No

Swat No

Swat-Urban No

Tank YES

Tor Ghar No

Upper Dir YES
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Appendix  X

ASER-Pakistan Children Test Procedure(Math Test)

Source: ASER Pakistan, 2016


