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Abstract

Labor is substantially less productive in agriculture than that in non-agricultural sectors in
poor countries. The gap has tended to increase over time. Conclusions from the existing
literature, which mainly trace the factors related to labor market frictions and statistical
discrepancies, are inconclusive in explaining the magnitude and pattern of the gap. The
phenomenon has remained puzzling. In this work, we intend to show that the unexplained
portion of the gap and its trend over time can fully be attributed to differences in capital
intensities and relative technical change. In formal framework with two sectors, two factors,
and exogenous prices, we show that in equilibrium with constant labor supply agricultural
productivity gap is related to relative cross-sector technical change through skill-premium
and division of, heterogeneous in skills, labor. Under plausible empirical assumptions and
stylized facts, resulting propositions imply that technology imports from abroad stimulate
the productivity gap between agriculture and non-agriculture in developing countries.

The theory developed is substantiated with two sets of empirical estimations on cross-
country longitudinal data. Results imply that technology imports have positive, statistically
significant, and robust impact on the sectoral productivity gaps in developing countries.
Key findings reinstate the debate regarding appropriateness of technologies transferred into
poor economies and corroborate longstanding views that without technological change
traditional agricultural productions deliver decreasing returns at increasing rate. High and
increasing productivity disparities in developing countries suggest that proper development
policies should be implemented to induce more balance and sustainable development.
Particularly, in the short run, policies ought to emphasize on the elimination of barriers to
free labor mobility between agriculture and non-agriculture, or equally, rural and urban
areas. In the long-run, governments should pay greater attention to technical change in the
agricultural productions, whether through domestic development or adoption of
appropriate technologies from more advanced countries. Accumulation of human capital
in the economy, overall, would make more skilled labor available for both traditional and
modern sectors to embrace technical changes more smoothly and consistently.
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Introduction

As of 2013 average per-person income difference between the richest and the poorest 25%
countries is recorded roughly 20-fold' . This gap is largely reflected on sectoral labor
productivities. Comparing to the rich group agriculture is 35-times less productive in the
poor group, and the analogous gap constitutes the factor of 12 for non-agricultural sectors.
Almost half of workers in the poor nations are engaged into agricultural production. These
numbers blindly imply to the presence of significant cross-sector productivity disparities
in developing countries, and more importantly, to the large portion of labor stuck in
relatively unproductive sector. Other things being equal, there is nontrivial incentive for
relocation of workers from agriculture into non-agriculture, which, in turn, should greatly

lessen the income gap across nations.

Data from the National Accounts suggest that agricultural productivity gap (APQG),
measured as the ratio of per-worker value added in non-agriculture to that in agriculture,
stands over the factor of 4 in developing countries with increasing trend over the last two
decades. If they can earn more income in other sectors, why are the agricultural laborers
not simply moving out of agriculture? Why are the significant potentials for income gains
not being realized? This work intends to provide a complementary standpoint in addressing

these questions that have been rigorously discussed in development economics literature.

ICalculated based on National Accounts Data, PPP-based.
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In founding theories, relatively large productivity gaps in agriculture is attributed to
differences in land quality, climate, and capital intensity (Clark, 1940), the ‘food problem’
(Schultz, 1953), as well as stagnant production technologies and human capital (Schultz,
1964; Hayami, 1969). Recent streams of literature have explored the role of capital market
distortions, and resulting statistical discrepancies due to home production (Parente et al,
2000; Gollin et al, 2004; Herrendorf and Schoellman, 2012; Gollin et a/, 2014); human
capital differences across sectors due to skill-constraints and skill-intensiveness of
production technologies (Caselli and Coleman, 2001), self-selection of labor based on
observed abilities (Lagakos and Waugh, 2013), and on unobserved skills (Young, 2014);
frictions distorting the labor markets (Restuccia et al, 2008; Au and Henderson, 2006;
Munshi and Rosenzweig, 2016) as well as aggregate productivity inefficiencies (Caselli,
2005; Vollrath, 2009), and barriers for using intermediate inputs (Restuccia et al, 2008) to

explain the sectoral productivity discrepancies in poor countries.

However, the half of the observed magnitude of APG as well as its increasing trend in
developing countries has remained unexplained (Gollin et al, 2014; You and Juraev, 2017a;

Juraev and You, 2017b).

This work proposes an alternative theory that complies with the observed magnitude and
pattern of APG both over time and across countries. Specifically, we argue that puzzlingly
large portion of the productivity gap in developing countries can only, and fully, be
attributed to ratio of labor shares of income in agricultural to that in non-agricultural

production. After using the data on labor shares corrected for self-employment, we show
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that the puzzle profoundly disappears! More importantly, given unchanged pattern of wage
gaps, moderately increasing trend of APG implies that labor shares are decreasing
(increasing) in non-agriculture (agriculture) due to increasing (decreasing) shares of capital
and technologies. In a simple accounting exercise, we demonstrate that relative sectoral
capital intensities in the developing countries have remained constant, and thus, the
changes in the productivity gaps unequivocally result from relative technical changes —

more intense in non-agriculture comparing to agricultural sector.

In a simple formal framework with two sectors, two factors, and exogenous prices, we also
show that in equilibrium, with constant labor supply, APG can be related to relative cross-
sector technical change through skill-premium and division of, heterogeneous in skills,
labor. Relationship is not positive per se without three empirically substantiated
stipulations from literature. The first is the technology-skill complementarity hypothesis
originating from Hicks (1932), which warrants a positive relationship between technical
change, demand for skilled labor, and the skill premium. The second is the technical change
that is sector biased resulting from demand driven profit incentives of producers. And
finally, it is the aggregate technical change in developing countries that take place primarily

through adoption of technologies from more advanced economies.

In our theoretical proposition, the skill-biased sector-specific technical change in
developing countries via technology transfers increases the skill premium and allocates
relatively more skilled labor into non-agriculture. Concentration of skilled labor further

induces the technical change and the transformation of production technologies in the

14



modern sectors. Agricultural production, on the contrary, remains relatively sluggish and

unproductive.

We test our hypothesis through two specifications of empirical estimations using the data
for the sample of 153 developing countries for the period of 1995-2014. In the panel
instrumental variable estimations, technology transfers are proxied by the imports of
machinery and equipment classified under the Section 7 of the Standard International Trade
Classification (SITC7) of the United Nation’s Conference on Trade and Development
(UNCTAD). In order to overcome the issue of endogeneity, the imports are instrumented
by the cumulative sum of bilateral trade of technologies predicted based on geographical
factors and proximities among countries, and the innovative intensity of the technology
exporters. The key exclusion restriction is the innovative intensity of the technology
producers, measured as the ratio of aggregated R&D spending to GDP. Controlling for
country specific fixed factors, panel instrumental variable estimation results provide
plausible support for the proposition that technology imports are an important determinant
of APG in developing countries. Findings are robust to inclusion of related covariates,
sample restrictions, as well as factors representing alternative channels of technology
transfers. In this first set of estimation specification, it is assumed that the R&D intensity
of partner countries does not affect APG in developing countries except through
technologies imported. The validity of this exclusion restriction is tested using the data on
direct investment flows. However, due to paucity of complete data on other factors through

which R&D intensity of the technology exporters may affect the sectoral productivities in
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developing countries, and because the panel instrumental variable estimations do not take
the possible dynamic prevalence of APG over time, estimation results may well be subject

to debate.

To provide alternative evidence on the theory developed and account for the likely dynamic
persistence of APG, the impact of technology transfers is also estimated using Arellano-
Bond system dynamic panel two-step specifications, where all variables-in-levels are
instrumented by lagged differences and variables-in-differences are instrumented by
lagged variables in levels as in Arellano and Bover (1995) and Arellano and Bond (1998).
Moreover, in order to directly control for the sectoral bias in technology transfers, the key
variable of interest in the dynamic panel specification is measured as the ratio of non-
agriculture specialized machinery imports to those specialized for agricultural production.
Overall, the results from dynamic modifications suggest that 1% increase in the ratio of
non-agricultural-to-agricultural technology imports tends to increase the productivity gap
by 0.18 units. Entailing tests provide plausible support for the validity of the instruments

used and the inferences derived.

This work fits into existing literature in number of ways. First, we demonstrate that
intersectoral allocation of skilled labor is determined by relative technical change in non-
agriculture and agriculture. In existing models e.g. Lagakos and Laugh (2013) and Young
(2014) distribution of skills is solely a supply side decision, where the skilled self-select
into sectors based on their observed and unobserved characteristics. Additionally, the

formal framework in this paper distinguishes the aggregate productivity parameter from
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sector-specific ones by formulating the production functions with skill-augmenting
technical change in each sector. This formulation explains the relevance of the aggregate

efficiency debated in Gollin ef al (2004), Vollrath (2009), and Caselli (2005).

Using alternative sources of data, we also explore the relevance of statistical discrepancies
and mismeasurement in calculation of productivity gaps for much larger samples than those
in Gollin et al (2014) and Herrendorf and Schoellman (2012). Our findings reinstate that,
while the magnitudes of APG’s in the sample of developed countries seems slightly
overestimated than those implied by national accounts data, productivity gaps in
developing countries cannot simply be attributed to the measurement issues. Contrarily,
the measurement problems seem to be relevant in the empirical estimations of labor shares
of income, which consistently assign lower values onto agricultural comparing to non-

agricultural production functions.

Furthermore, this work presents a unique comparative analysis of economic transformation
of the advanced countries from a historical perspective, which helps understand why the
developed countries have exhibited low and relatively constant APG’s for over hundred
years until now. The conclusions from the analysis imply that the historical development
path of the advanced countries today did not necessarily embody large sectoral productivity
disparities. Accumulated knowledge and human capital development triggered
productivity growth, primitively, in the agricultural sector. Sufficiently high agricultural
productivity enabled the reallocation factors of production and excess resources into non-

agricultural sectors. The agricultural productivity revolution preceded the industrialization
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stage in the case of the advanced economies. The sequence of transformation, however,
seems to be reversed for the developing countries today due to the availability of the

technologies readily available in the world markets.

Another important novelty of this work is the establishment of empirical link between
technology transfers and the productivity gaps in developing countries. To the best of our
knowledge, this is the first attempt to do so. The closest in context research to this work by
Wang and Wandschneider (2014) presents two-sector small economy endogenous growth
model and concludes that increase in product-varieties’ share in manufacturing imports
increases the sectoral productivity in favor of modern productions. Their underlying
intuition originates from Schumpeterian models of endogenous growth that increasing
varieties in manufacturing imports induce the creation of more product varieties in the
domestic manufacturing sector and increase labor productivities. They, however, assume
that trade does not result in reallocation of labor, neither do they take the heterogeneity in
skills of labor into account. Moreover, in their framework similar reasoning in case of
varieties in agricultural imports would also give symmetric conclusions in favor of
decreasing APG. In this work, we allow for technical change to be neutral, or non-
agriculture biased, or agriculture biased. Should technical change favor agriculture relative
to non-agriculture, skill premium would increase, and APG would decline due to relatively

more skilled labor moving into agriculture.

Key findings from this work corroborate longstanding views that without technical change

traditional agricultural production technologies deliver decreasing returns at increasing rate
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(Theodore Schultz, 1953, 1964; Arthur Mosher 1966; Yujiro Hayami and Vernon Ruttan,
1985; Peter Timmer, 1988). High and increasing APG in developing countries suggest that
the central importance of agriculture in development, at least in terms of the existence of
large pools of less productive workers, seems yet to be tackled with proper development
policies. Instead, surplus resources are directed to the productions in the non-agricultural

sectors at the cost of delaying agricultural, perhaps aggregate, development.

Particularly, our analysis and results suggest that, in the short run, development policies
ought to emphasize on the elimination of barriers to free labor mobility between agriculture
and non-agriculture, or equally, rural and urban areas. In the long-run, governments should
pay greater attention to technical change in the agricultural productions, whether through
domestic development or adoption of appropriate technologies from more advanced
countries. Accumulation of human capital in the economy, overall, would make more
skilled labor available for both traditional and modern sectors to embrace technical changes

more easily and consistently.
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Chapter 1. Agricultural Productivity Gap: Theory vs. Data

1.1. Preliminary Analysis

In this section, we start off by presenting the analytical discussion of labor productivity
gaps implied by national accounts data. By definition, APG is measured as the ratio of
value added per worker in non-agriculture to that in agriculture:

RZNA
VA /L

a a

APG )

Where, V4 and L are value added and labor, subscripts ‘»’ and ‘a’ refer to non-agriculture
and agriculture, respectively. ‘Agriculture’ includes agricultural production, hunting,
forestry, and fishing in accordance with the International Standard Industry Classification
(ISIC) Rev.2 of the United Nations?. Non-agricultural sector is composed of all other
economic activities. Value-added is the difference between gross value of output and
intermediate inputs, and available from the World Development Indicators (WDI). Labor
is derived from share of employment in each sector and total employment in the economy.
Data on the share of employment is available from Food and Agriculture Organization
(FAO) of the United Nations®. Total employment is measured by the total number of
persons of 15 years of age or older engaged in any economic activity for a given year.

Number of persons engaged is obtained from the World Penn Tables. Sample ranges from

2Equally refers to Sections A and B in ISIC Rev.3 and Section A in ISIC Rev.4.

3FAO employment shares data originate from the International Labor Organization’s (ILO)
household survey data. Surveys that are concentrated on non-representative geographical
coverage such as urban areas, towns, major cities, and state-owned enterprises are excluded.
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1995 to 2014 and includes 176 countries with relevant data available. Summary statistics

of the variables presented in appendices Table Al.

Countries are classified into low income, lower-middle income, higher-middle income, and
high-income categories in compliance with the 2016 December review by the World Bank.
It is important to acknowledge that there is no precise definition of the ‘developing’ and
‘developed’ countries. Frequently, ‘high-income’ is interchangeably used to represent the
‘developed’ group despite there is significant heterogeneity in quality of economic
development*. To tackle this issue, economies that became OECD member in or before
1995 are conditionally referred to ‘developed’ countries®. Table 1 summarizes the APG’s

computed®.

Results imply that an average worker in non-agriculture is over four times more productive
than her counterpart in agricultural sector in developing countries. The calculated gap is
two-fold in the developed countries. When population weights are applied, gap further
increases in the sample of low and middle income or, in general, developing countries. This
implies that APG is relatively larger in countries with more population. On the contrary,

weighting decreases the gap in both high-income and developed countries.

4For example, it would be implausible to treat Saudi Arabia and Sweden, or Croatia and Canada
under one level of development.

>Following countries are classified into the ‘developed’ group: Australia, Austria, Belgium, Canada,
Switzerland, Germany, Denmark, Spain, Finland, France, the United Kingdom, Greece, Ireland,
Iceland, Italy, Japan, Luxembourg, Netherlands, Norway, New Zealand, Portugal, Sweden, and
the United States.

& Summary of APG’s by income categories are illustrated in Figure A2 in Appendices.
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Table 1. Implied APG

. Number 0
Country groups APG Weighted APG countries f
Low and middle income 4.03 4.5 121
High income 3.01 2.8 55
Developing 4.2 4.3 153
Developed 2.2 2.1 23

Notes: The second column is APG simply averaged over 1995-2014. The third column is the average of
population weighted APG over 1995-2014.

Among the developing countries the largest in magnitude productivity gaps are recorded
in Bhutan (15.1), Botswana (15.8), Qatar (22.5), Kenya (21), and Senegal (15.2).
Calculated APG’s in developed countries are, roughly, in the range of one to five. Median
APG is 3.1 and 1.8 in the ‘developing’ and the ‘developed’ samples, respectively.

Distributions are illustrated in Figure 1.

Is high APG associated with low income? The answer seems to be mixed. Figure 2
illustrates the raw APG and purchasing power adjusted income per-capita. The
observations from the figure has two important implications: that for same or similar levels
of income, APG varies significantly, and that for same or similar levels of APG, income
differences can be enormous. For example, both Tanzania and Senegal have per-person
income of roughly 1700 USD. The productivity gap is 7.4 in Tanzania whereas it is 15.2
in Senegal — the difference is twofold! On the contrary, comparison between Guinea and
Trinidad and Tobago shows that both have APG’s slightly over 10 whereas the income
difference between the two is 22-fold! However, in general, higher income is associated

with lower APG’s.
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Figure 1. APG in Developing and Developed Countries
Developing countries Developed countries

o T T T

0 10 20 0 10 20
Notes: Averages over 1995-2014

Negative, yet blurred, relationship between APG and income can be observed due to two
reasons: 1) because a nontrivial part of income is determined by other factors; 2) because
APG by itself does not necessarily imply to having a low level of income. By no means we
neglect the importance of other factors, yet, continue with the second reason to keep the
scope of this work as focused as possible. Since APG measures the relative productivity in
two sectors, a country with high APG can have high income if: a) both agricultural and
non-agricultural labor productivity is high relative to other countries; or b) unproductive
agriculture employs small portion of labor force; or c¢) both. Opposite notion holds for
countries with low implied APG and low income. High APG in countries with large share
of employment in agriculture, however, implies to substantial potential gains in
reallocation of labor from the less productive to the more productive sectors. In order to

provide more substantiated explanation to the importance of sectoral productivity
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disparities it is of crucial importance to look at the share of employment in agriculture as

well as labor productivity in both sectors relative to an arbitrary cross-country threshold

level.
Figure 2. APG and per-person income
a _
o
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Note: Empty and filled circles represent developing and developed countries, respectively. Averages over 1995-2014.

As a threshold level, we choose the labor productivity in the US, without the loss of
generality. Figure 3 compares the labor productivity gap in non-agriculture and agriculture
in different groups of developing countries. Specifically, vertical axis represents the ratio
of non-agricultural labor productivity in the US to that in each country. It, therefore,
measures how unproductive an average non-agricultural labor is comparing to her
counterpart in the US. Horizontal axis represents the ratio of agricultural labor productivity
in the US to that in each country. For example, factor of 10 on horizontal axis means that

average agricultural labor is 10 times more productive in the US comparing to average
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agricultural worker in the country of interest. Measures of labor productivity are adjusted

for Purchasing Power Parities (PPP) in each country and represent face values.

Conclusions from the Figure 3 are striking’! In almost all developing countries, labor
productivity gap relative to the US is greater in agriculture than non-agriculture. For
example, in Ethiopia, agricultural labor is 64 times less productive than that in the US,
whereas the gap is 18-fold in non-agriculture. The relative gap in agriculture reaches
shockingly large level of 121 for Mozambique, while the same gap in non-agriculture

stands at the factor of 15.

Similar picture is observed in case of middle-income countries. In China, for example,
labor is 36-fold less productive in agriculture, whereas the gap is 3.6 for non-agriculture
relative to the US. The gaps are 2.8 and 1.8 in agriculture and non-agriculture in Korea,

respectively, and 23-fold and 6.5-fold for India.

All these numbers imply that high agricultural productivity gap is due to very low labor
productivity in agricultural production rather than very high non-agricultural productivity

in the developing countries.

’ The same picture for developed countries is presented in Figure Al in appendices. | let that
case speak for itself.
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Figure 3. Labor productivity gap relative to US: non-agriculture vs. agriculture
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Note: Vertical axis=non-agriculture, horizontal axis=Agriculture.
Straight line from the origin represents the gap in two sectors being equal.

Now, let us return to the motion about the relationship between APG and per-person
income and present two extreme cases. Consider Central African Republic (CAF). CAF is
one of the poorest nations in the world with per capita income being around 800 USD.
However, APG in CAF averages to 1.8 over 1995-2014, which is even lower than the
average corresponding to the developed countries in Table 1. Coexistence of low income
and low APG means that in both agriculture and non-agriculture labor productivity is
proportionately low. Indeed, referring to the low-income group (3) in Figure 3, relative to
the US, labor productivity gap in agriculture and non-agriculture is 44 and 39 — equally

low. Consider, now, Qatar. In Figure 1, Qatar is the obvious outlier with APG over 20 and
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per-capita income being higher than that in all developed countries. What the case of group
(4) in Figure 3 implies is that while Qatari agricultural labor is twice less productive than
that in the US, non-agricultural labor is twice more productive than that in the US. In what
we discuss next, less than 1% of the workers in Qatar are employed in agriculture, which

allows for the existence of high APG and high-income (Figure 4).

Is there significant misallocation of labor? To address this question let me start off with the
case of developed countries. In the ‘developed’ group, on average, non-agriculture is 2.2
times more productive than agriculture, and merely 4.7% of the employed are engaged into
agricultural work. Without any assumptions, basic reasoning implies that even if some of
the labor moved out of agriculture into non-agriculture the potential gain in aggregate
productivity, or equally income-per-worker, would be negligible. On the contrary, in the
case of developing countries, over one-third of the workers are in agriculture when the non-
agriculture is over four times more productive. It is, therefore, plausible to expect that,
holding everything else constant, reallocation of labor from less-productive sector to more
productive sector should result in substantial improvement in per-person income in

developing countries.
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Figure 4. APG and Agricultural employment
(averages over 1995-2014)
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In fact, potential gain should be higher, the higher the implied APG and the higher the
share of employment in agriculture. For majority of developing countries data displayed in
Figure 4 show that higher productivity disparities across sectors are associated with higher
shares of employment in agriculture. When the sample of 40 poorest countries is
considered, share of employment averages to 70% in agriculture, and APG surpasses the

factor of 7!

Have countries realized such potentials for income-gains? What stylized facts in Figure 5
imply is astonishing: despite the share of employment in relatively less productive sector

— agriculture, has steadily declined over time, APG has increased in developing countries
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over the last two decades! On the contrary, there is no viable trend of APG observed in

developed countries®.

Figure 5. APG and Agricultural employment over time
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What causes such a large magnitude of productivity disparities in developing countries?
As countries develop, why have the potential gains implied by APG increased instead of
decreasing? Why should we see APG even in developed countries at all? These are some,
but not all, of the important questions that have not found complete answers in development

economics research. This work is obviously not the first one to pose these inquiries. Related

& In construction of the Figure 5, only those countries with complete data available from 1995 to
2014 are considered. Therefore, ‘developing’ and ‘developed’ samples include 116 and 19
countries respectively.
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literature can be traced back over a half a century. Yet, this paper intends to provide a

complementary explanation to the puzzle.

1.2. Existing Literature

Before we move onto exploring the literature related to productivity differences in
agriculture and non-agriculture, introduction of some basic accounting identities would be
plausible. Referring to equation (1), labor productivity in each sector is as the ratio of value
added (VA4) and labor (L). As defined in System of National Accounts (SNA) of the UN,
value added is the value of output less the consumption of intermediate inputs. When

considered from the income approach, V4 is the sum of labor’s and capital’s compensation:

VA=wL+rK  (2)

Where, ‘w’ and 7’ are wage-per-worker and rent-per-capital, respectively. ‘L’ and ‘K’
stand for labor and capital, as commonly expressed. Straightforward reformulation of (1)

using (2) gives another representation of APG:

APG - w, +rk,

)

w, +rk,

Where, k=K/L is the capital per worker in each sector.

Equation (3) implies that relative labor productivity in non-agriculture can be higher if

wages and/or capital-per-labor are higher in non-agriculture, given that return to capital is
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identical in both sectors. Existing literature can be precisely summarized around the

equation (3).

Large productivity differences between agriculture and non-agriculture, both within and
across countries, were first discussed by Colin Clark in his ‘The Conditions of Economic
Progress’ in 1940°. Clark, by analyzing extensive raw data, concludes that per-worker
cereal production i.e. agricultural productivity was surprisingly lower in poor countries,
and that low agricultural productivity was one of the key reasons for their high poverty
rates. Holding the terms of trade between cereals and dairy products constant at 1925-1934
prices, he finds that merely 6.4 percent of the labor force in New Zealand would be enough
to produce the dairy food requirements in the country. On the contrary, agricultural
productivity was so low in former USSR that it would take twice the size of all labor force
to meet the same limits. Clark suggests that differences in agricultural labor productivity
can be, mainly, explained by land quality, climate, and relative capital intensities. Some of
the views of Clark (1940) oppose those from later works such as Theodore Schultz (1964).
Schultz neglects the importance of factor endowments and land quality, and asserts the role
played by innovations, fertilizers, and machinery in explaining the productivity differences

in agricultural sector between poor and rich countries.

Yujiro Hayami (1969) made one of the early attempts to quantify the Schultz propositions.

Hayami, as in Clark (1940), also presents that for 1957-1962 years, India’s labor

d Colin Clark is, in fact, one of the co-founders of division of economic activities into sectors:
agriculture, industry, and services.
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productivity in agriculture was substantially lower than that in the US and Japan. More
precisely, the gap was almost 50-fold between India and US, and 5-fold between India and
Japan, when agricultural value added per male worker was considered. To decompose the
gap, he estimates the world aggregate agricultural production function using data for 38
countries. Hayami finds that factor endowments i.e. land/labor ratio and fertilizers each
explain 20% of the gap, whereas education, and research and development account for the
remaining portion'°. In case of India vs. Japan, human capital accounts for 40% of the labor
productivity gap in agriculture. Hayami (1969) points out that India’s agricultural output

would double if the level of education improved to Japanese level'!.

Early analyses by Clark (1940), Schultz (1964), and Hayami (1969), among many others,
are of absolute importance in terms of setting the cornerstones in APG literature. However,
they are raw in a sense that the quality of data used is low, that scope of samples is limited,

and that available theories and analytical techniques used are primitive.

OHayami measures education as literary ratios and school enrollment ratios for the first and
second levels of education. The variable ‘research and development, and extensions’ is measured
as average number of graduates from agricultural faculties in third level of education during
1958-1962 per 10.000 farm workers. (Hayami, 1969.p.3).

M Hayami’s (1969) conclusions are strictly based on the factors of elasticity estimated in aggregate
production function. Without doubt his work is of high importance in APG literature, however,
certain assumptions and measurement issues in his calculations create grounds for flaw. For
example, he measures the labor in agriculture as number of male workers in agricultural
production. He also excludes the number of workers in forestry and fishing as he estimates the
production function for crop-production only. Because of data unavailability, measure of
agricultural output does not take the capital formation and capital stock into account, which may
result in biased results. Such restrictions impose some critical doubts on estimated factor
elasticities of production, hence, his concluding findings.
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Subsequent works explaining the magnitude and importance of APG can be classified into
three mutually nonexclusive categories. The first category includes the literature dealing
with statistical discrepancies and measurement issues in computing the APG. There is a
rationale doubt in development economics about the quality of data reported in SNAs.
Agricultural sector is especially vulnerable to such measurement errors because significant
portion of the labor force are self-employed and nontrivial part of output is home-produced.
Any understatement of value added in agriculture or overestimation of agricultural
employment may result in illusionary high magnitude of APG implied by the National
Accounts data. Stephen Parente, Richard Rogerson, and Randall Wright (2000), Douglas
Gollin, Stephen Parente, and Richard Rogerson (2004), Berthold Herrendorf and Todd
Schoellman (2012), and Douglas Gollin, David Lagakos, and Michael Waugh (2014) fall
into this category. Parente ez al (2000) and Gollin et a/ (2004) present a model where capital
distortions induce home production and less labor participation in market activities. The
relevance and significance of the home-production induced mismeasurement issues with
respect to the observed magnitudes of productivity disparities across countries are explored

in Herrendorf and Schoellman (2012) and Gollin ez a/ (2014).

The second stream of literature traces the factors impeding the competitive mechanisms in
labor markets while exploring the sources of APG. Predominant part of the literature in
this context, on the grounds of the ‘dual economy’ concept of Arthur Lewis (1954), has
dealt with the wage differences between non-agriculture and agriculture. Intuitively,

because non-agricultural production is more skill intensive than agriculture, workers in the
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former tend to have more human capital as well as skills, both observed and unobserved.
Francesco Caselli and Wilbur Coleman (2001), David Lagakos and Michael Waugh (2013),
and Alwyn Young (2013) are some of the critical works in this category. Conclusions from
Caselli and Coleman (2001) imply that, because less developed countries are typically
constrained by the number of skilled labor force, agricultural production faces relatively
more shortage of educated workers. According to Lagakos and Waugh (2013), on the other
hand, low skilled workers sort themselves into agriculture while high-skilled into non-
agriculture. Similar sorting mechanism dominates in Young (2013) based on unobserved

skills and abilities.

Human capital is not the idle factor that may create differences in labor compensations
between agriculture and non-agriculture. Besides skills, sectoral wage differences may
emerge if labor mobility across sectors is limited or restricted. Several papers highlight the
barriers to labor mobility in explaining urban-rural wage gaps. For example, Chun-Chung
Au and Vernon Henderson (2006) show how ‘hukou’ system restricts the rural-to-urban
migration and prevents substantial income gains in China. Kaivan Munshi and Mark
Rosenzweig (2016) explore the role of social insurance networks within ‘casfes’ in India
that are found to discourage rural-to-urban migration and encourage the persistence of high

urban-rural wage gaps.

The last, but not the least in importance, category includes the literature that emphasize
output market imperfections, capital intensity, technology, and aggregate economic

efficiency in generating labor productivity gap between non-agriculture and agriculture.
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Francesco Caselli (2005), by growth account exercises, shows that total factor productivity
and capital-per-worker is an important determinant of labor productivity differences in
agriculture among countries. Diego Restuccia, Dennis Yang and Xiaodong Zhu (2008)
argue that barriers for employing intermediate inputs seriously hamper the productivity in
agricultural production in less developed economies. In Dietrich Vollrath (2009) low
productivity in agriculture is associated with low aggregate productivity in economies. In
Jong-il You and Sirojiddin Juraev (2017a, 2017b), capital income and output market

imperfections explain the puzzlingly large residuals in APG.

As pointed out, these categories of literature are arbitrary and mutually non-exclusive.
Many of them share significant commonalities, and sometimes, controversial views. In

what follows, I review them in detail and elaborate more on their findings.

Both Parente er al/ (2000) and Gollin et al (2004) incorporate agricultural sector into
neoclassical growth framework of Robert Solow (1956) to explain the cross-country
productivity gap that is much larger in agriculture comparing to in non-agriculture. By
doing so they demonstrate that neoclassical framework is incapable of explaining the large
APG’s observed across countries. They show that in neoclassical framework APG in

equation (3) is reformulated into a basic accounting identity given as:
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Where, LS — stands for labor share of income and, subscripts ‘a’and %’ denote agriculture
and non-agriculture as above!?. Identity (4) must explain the APG since in equilibrium
wages are equalized across agriculture and non-agriculture. Typically, income differences
in neoclassical growth model are attributed to policies distorting capital accumulation and
exogenous productivity differences i.e. total factor productivity (TFP) or the Solow
residual. Parente et al (2000) and Gollin et a/ (2004) argue that TFP differences should
have no impact on APG’s observed in countries. Therefore, they conclude that neoclassical
model, with the agricultural sector explicitly represented, cannot explain the existing
sectoral productivity disparities. Because, TFP is assumed to change exogenously in Solow
(1956), they continue by considering policies that distort capital accumulation in the sectors.
To account for the role of capital distortions they incorporate home production into their
models. While, in Parente et al (2000) capital distortions push labor participation from
market activities into home production, same effect in Gollin ef a/ (2004), additionally,
induce labor to stay in rural area and engage more into home production. In both cases,
since home production is not readily reported in SNA data, observed low agricultural
productivity may be biased downward, which results in high APG’s recorded for poorer

countries, typically, with higher capital distortions.

Caselli and Coleman (2001) take alternative path in explaining the productivity gap

between non-agriculture and agriculture. They focus on the wage premium in favor of non-

2Since labor share of income is wlL/VA, equation (4) is easily derived by substituting LS into
equation (3).
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agriculture in equations (3) and (4). By analyzing the empirical data in the US, they show
that wage in the agriculture has gradually converged towards the wage in non-agriculture.
In their model, regions with less-skilled labor specialize in agriculture, whereas regions
with more skilled labor produce nonfarm goods'?. Decreasing costs of obtaining education
ultimately makes it optimal for farm workers to acquire more skills and, thus, move into
non-agriculture. In case of the United States, reduction in transportation costs, changes in
schooling curricula, as well as the end of ‘white vs. black’ segregation scheme in schools
are some factors that have induced the farm workers obtain more and better schooling.
Caselli and Colemen (2001), in calibration of their model, find that barriers to labor
mobility have negligible impact on wage differences between non-agriculture and
agriculture. One important implication of their propositions is that, since non-agriculture
1s more skill-intensive, the skill requirements might be one factor impeding the movement

of labor from agriculture to non-agriculture.

Some of the most interesting findings regarding APG are presented in Caselli (2005).
Besides evidencing on substantial differences in labor productivity gaps, Caselli
undertakes number of exercises to question how significant these gaps are in explaining
the income differences across 80 countries using data from 1996. In his first exercise,
Caselli makes number of counterfactual assumptions on sectoral productivity and labor

shares. Under one counterfactual, every country is assumed to have the US level of

BIn fact, Caselli and Coleman (2001) show that when 120 industries are classified by the share of
workers with elementary or less schooling in US Census of Population, agriculture was in bottom
10 group for each year from 1940 to 1990.
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agricultural productivity, own non-agricultural productivity and own labor share of
employment. Under another counterfactual, all countries are assumed to have the US
agricultural share of employment and own agricultural and non-agricultural labor
productivity levels. Results he obtains are amazing! In the first case, income inequality
across countries basically disappears! In the second, it declines by roughly threefold!
Caselli’s (2005) another counterfactual analysis decomposes the differences in agricultural
labor productivity for a sample of 65 countries. By accounting for observable factors of
production, namely, labor, capital, land, and human capital, he concludes that per-worker
capital explains 15 percent of cross-country productivity differences in agriculture. By
contrast, capital can explain 59 percent differences in non-agriculture. Similar exercise is
done in Lagakos and Waugh (2013) using more recent data but for a smaller sample of 28
countries from various income levels. Their results assign 22 and 29 percent variations in
agricultural and non-agricultural productivity to capital intensities, in that order. Findings
from Caselli (2005) and Lagakos and Waugh (2013) imply that, while capital does play a
significant role, it is the productivity parameter i.e. TFP that captures large portion of

existing gaps in agriculture.

Numerous papers in APG literature relate the low agricultural productivity in poor

countries to, so called, ‘the food problem'*’ and ‘the stagnant agricultural productivity

YSchultz discusses number of reasons for persistence of low agricultural productivity in poor
countries. The food deficit is one of them. According to his proposition, agriculture produces
necessity for living — the food. Despite low productivity, poor people spend such a large portion
of theirincome on food that they are not able to simply move out of agriculture. He also discusses
number of demand side factors, which profoundly neglects the possibility that sluggish
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trap”’ introduced by Theodore Schultz in 1953 and 1964, respectively. For example,
Restuccia ef al (2008), in two-sector general equilibrium model, demonstrate that the low
aggregate productivity and barriers for employing the intermediate inputs account for
roughly half of the cross-country sectoral productivity gaps in agriculture. They argue that
the barriers can be in two forms: direct barriers — when cost of intermediate inputs such as
fertilizers are high, for example, due to trade policies protecting domestic industries; and
indirect — when free mobility of labor is restricted or limited so that the wages in agriculture
remain low, which induce farmers employ more labor than intermediate inputs in
production. Similarly, Gottlieb and Grobovsek (2015) find that restrictive communal land
arrangements in Sub Saharan Africa substantially dampen the agricultural labor

productivity relative to that in non-agricultural sectors.

The ‘food problem’, which is reflected in low aggregate productivity in poor countries,

drives relatively unproductive workers to self-select into agriculture in Lagakos and Waugh

agriculture is a self-resolving issue. It is a common wisdom that high demand for a good induces
its production as well as productivity. Although demand for agricultural goods are mostly
determined by population and income in the long run, according to Schultz, however, population
growth in countries tends to decline over time, which means there is marginally diminishing
change in demand for agricultural output. On the other side, demand of agricultural goods with
respect to income is inelastic and declines as income increases. This, further, implies that
potentials for demand-induced agricultural productivity improvements are negligible even in the
long-run. He argues that rapid and successful economic transformation of countries depends on,
mainly, supply side changes, specifically, implication of new production techniques in agricultural
production. Schultz presents that technological advancements increased the US agricultural
production by 1.6% annually for 27 years prior to 1953.

15 With half of the population residing in rural areas and earning income from, mainly, agricultural
work, poor countries seem to be trapped into, what Schultz (1964) defined as special long-term
agricultural equilibrium, characterized with detrimental productivity growth and accumulation of
unskilled labor, as well as barriers distorting any incentives for further improvements.
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(2013). Because in the advanced economies aggregate productivity is typically high, only
those workers with most comparative advantage in agricultural production self-select into
agriculture. In the quantitative experiment of their model, Lagakos and Waugh find that
selection captures 29 out of 45 factor differences in agricultural productivity between the
richest and the poorest 10 percent of the countries. In Young’s (2013) model, which
conceptually shares similarities with Lagakos and Waugh, similar sorting of workers
between urban and rural areas takes place due to unobserved skills and abilities. Young
postulates that education and unobserved skills are correlated, although imperfectly, and
that, urban production is characterized with relatively higher skill intensity. Migration of
better educated rural workers into urban production represents their higher unobserved
skills, and by the same token, migration of urban workers into rural areas is due to their
lower unobserved skills. Young’s conclusions imply that urban-rural wage gaps are
completely explained by the observable education and unobserved skills. Unlike Lagakos

and Waugh, this scheme of sorting does not leave any unexplained gap in relative wages.

Herrendorf and Schoellman (2012) calculate the APG for the US states using Bureau of
Economic Analysis data for the period of 1980-2009. They find that, on average, labor is
twice productive in non-agriculture than in agriculture. By adjusting the implied APG to
ratio of wages and estimated labor shares of income, they conclude that accounting identity
given by equation (4) does not hold. They show that the identity can be reestablished once
agricultural value added is corrected for underreported proprietors’ income. Herrendorf

and Schoellman repeat the similar exercise for a sample of 12 countries and conclude that
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mis-measurement problems are universal'®. Their conclusions contradict those by Gollin
et al (2014) when it comes to the measurement concerns. To check whether APG is
overstated by SNA data, Gollin ef a/ (2014) employ micro household data from Living
Standards Measurement Surveys for 10 countries!”. Their results show that there is no
evidence of mis-measurement in APG from the macro data provided in the National
Accounts. Same conclusions hold even when APG is contrasted to the ratios of income-

per-worker and expenditure-per-worker in the micro data'®.

Gollin et al (2014) find non-agriculture to be, roughly, four times more productive than
agriculture for a sample of 113 developing countries. In addition to ‘data-checking’
exercises, they compute the differences in human capital and working hours between the
sectors as well ratio of urban-to-rural living costs. Using country specific estimations of
return to schooling, they find that human capital per-worker in non-agriculture is, on
average, 1.5 times of that in agriculture for a sample of 90 developing countries. Their
calculations remain relatively robust even when lower rates of return to schooling are
applied in case of poorer countries. It implies that human capital differences cannot account

for large APG, which to some extent undermine the importance of Lagakor and Waugh

8Following countries are examined by Herrendorf and Schoellman (2012) in their alternative
sample: Brazil (1991,2000); Canada (1991,2001); India (1993,1999); Indonesia (1995); Israel
(1995); Jamaica (1991,2001); Mexico (1990,2000); Panama (1990,2000); Puerto Rico (1990,2000);
Uruguay (2006); United States (1990,2000); Venezuela (1990,2001).

YGollin et al (2014) provide micro evidence for Armenia (1996), Bulgaria (2003), Cote D’lvore
1988), Guatemala (2000), Ghana (1998), Kyrgyz Republic (1998), Pakistan (2001), Panama (2003),
South Africa (1993), and Tajikistan (2009).

8Contradiction is purely conceptual since sample of Herrendorf and Schoellman (2012) does not
have common countries with that of Gollin et al (2014)’s sample using micro-data.
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(2013) and Young (2013) in explaining APG’s'®. On average, half of the productivity gap
between agriculture and non-agriculture remains unexplained even when the differences in
human capital, working hours and urban —rural living costs are taken into account®® (Gollin

et al, 2014, p.36).

The recent pieces of related literature, that we are aware of, are You and Juraev (2017a)
and Juraev and You (2017b). In our first paper, we show that even after adjusting for non-
agriculture — agriculture wage differences, significant part of APG remains unexplained.
Since the wage ratio captures all labor market frictions related to human capital differences
e.g. sorting on skills and education as well as barriers for cross-sector labor mobility, the
remaining gap in labor productivity must be attributed to the differences in the capital share
of income. By evidencing on empirical and estimated labor shares of income, we
demonstrate that no puzzle in the observed magnitude of APG remains unexplained. In
Juraev and You (2017b), we proceed with findings in our first work and amplify the
inadequacy of neoclassical models under the assumption of perfect competition as in
Parente ef al (2000) and Gollin ez a/ (2004). We emphasize the importance of output market
imperfections in generating the large productivity gaps in agriculture and non-agriculture.

While Parente ef al/ (2000) and Gollin et al (2004) diverge into home-production, we

19 Vollrath (2009) find even smaller ratio of human capital between non-agriculture and
agriculture - around the factor of 1.2.

20Gollin et al (2014) find ratio of working hours between non-agriculture and agriculture
constitute, average, 1.2, whereas urban-rural living costs account for the factor of 1.3.
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incorporate monopoly powers in non-agriculture, instead, that give birth to substantial

profit-per-worker, typically, accrued to capital owners.

Literature discussed in this section circles around the current issues related to cross-country
income differences from the point of large sectoral productivity gaps implied by data.
However, there is limited discussion of why APG is consistently low in developed
countries, and whether APG is typical phenomenon of economic transformation, and if so,
whether the developed countries also experienced similar productivity disparities when
they were poor. The only piece of interest regarding this curiosity that we came across with
is in Gollin et al (2004). In matching the historical per-capita-income of the US, UK, and
Canada with per-capita-income of developing countries in 1990, they show that APG has
been surprisingly small and relatively constant in all three countries since 1900. They,
however, do not explain the reasons behind such differences in economic transformation

between the poor countries today and the ‘poor’ countries of the past.

Since the poorness is closely associated with APG today, we find the phenomenon of great
importance to be analyzed from the historical perspective. In the following sub-section, we
intend to accomplish this task by providing basic theoretical insight into why developed
countries might not have experienced the stage where large portion of labor are stuck in

substantially unproductive production.
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1.3. Additional Insights

Understanding the persistence of productivity differences between non-agriculture and
agriculture in developing countries sets forth a complex task of synthesizing the theories
explaining the economic transformation and growth from the historical perspective. Doing
so takes us back to the period when today’s rich countries were poor and helps us elaborate
more on the relationship between APG and economic transformation. We intend to
substantiate the proposition that transition from the ‘poorness’ to the ‘richness’ in the
developed countries did not necessarily embody large productivity differences between
traditional sector i.e. agriculture and modern sectors i.e. non-agriculture. Instead, high

agricultural productivity preceded and created grounds for the industrialization.

1.3.1. Historical Perspective

Not that the rich countries were once poor, they were poor for prolonged periods of time
until the early 19" century, when industrial revolution took off. Pre-industrialization period
can well be described referring to the provocative work by Thomas Malthus in 1789 — “An
Essay on the Principle of Population.” There, Malthus presents one of the initial attempts
to explain the relationship between agricultural production, population growth, and
sustainable development. Up to the late 18" century agriculture was the main source of
income and production in the Old Europe. Living standards did not improve and people

lived at subsistence levels of income. Malthus advocated the idea that disproportionate
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rates of growth in population exceeding that in food production would give birth to a state,
where consumption- and income-per-person remain stagnant?!. In what later became
known as “Malthusian trap”, any gains in production surpluses resulting from increased
agricultural productivity and/or inputs would be concomitantly dispersed off by population

growth.

The theory lends itself to three basic assumptions: that human needs food to sustain, that
land used for food production is fixed, and that population growth is an inevitable natural
process?2. In contrast to Adam Smith (1776) and David Ricardo (1817), Malthus paid
limited attention to technical advancements. He argued that even increasing capital in
agricultural production would result in per-capita income that is no more than the
subsistence level in the long run. Higher capital intensity would increase the agricultural
labor productivity and wages in the short run only, which would then induce higher
population growth. Because land is fixed, however, decreasing returns would resettle the

economy back into equilibrium with subsistence (or even lower) level of wages.

In its simplest possible form, Malthusian production would be given by:

Y=f(K,N,L)

2! Thomas Malthus assumed that population tend to grow geometrically, whereas amount of
food produced grows arithmetically.

22 Malthus puts it holistically as: “...the passion between sexes is necessary and will remain in its
present state.” (Ch1.p4).
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Where, output (Y) is produced using capital (K), population®* (N) and fixed land (L ).
Abiding by Malthusian propositions, population is, in turn, determined by output:
N=4(1)
Per capital output would then be:
y=[k1)

Because the production was mainly agricultural and because the key input in agricultural
production was land, fixed in amount, combined return to capital and population would be

diminishing as:

a¥ > f(aK,aN,L)> f(K,N,L) ¥V a>1

An important assumption is that population grows ‘geometrically’, whereas output growths

‘arithmetically.” As a result of increase in K, change in per capita income would be:
y=Y-N<0

Increase in Y would be less than that in N because L=1L .

23| use the term ‘population’ to infer to ‘labor’ in this section.
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Malthusian theory well describes the Old European economies characterized by mostly
agricultural production®*. For example, Gary Hansen and Edward Prescott (2002) evidence
that real farm wage — a rough proxy for living standards, was roughly constant in the
English economy from 1275 to 1800. Returns to land were closely and positively correlated
with the population: land rents increased when population increased and decreased when
population shrank. Oded Galor and David Weil (2000) present that per-capita income in
European economies did not grow from 500 to 1500, while the population growth was

barely 0.1 percent per annum.

Can Malthusian theory be applied to European countries only? The answer is ‘not
necessarily.” Several papers also suggest that stagnancy in growth was present in China for
almost two millenniums. For example, according to Kao Chang (1986) wages in China
stayed constant from the first to early nineteenth century. Dwight Perkins (1969) also
discusses how growth in agricultural output was sluggish just to keep up with population

growth in China for almost thousand years.

Malthusian theory can no longer be fit to the development patterns of countries in present
time. Hansen and Prescott (2002) observe that starting from 1800 Malthusian theory no

longer holds in case of the English economy. They present historical data for the United

24 This is an important reason why | refrain from presenting the discussion of other influential
works in Malthusian period such as Adam Smith’s “Wealth of Nations” (1776) and, later, David
Ricardo’s “Principles of Political Economy and Taxation” (1817).
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Kingdom which show that for the last two centuries both high labor productivity and high

population growth coexisted, the value of land in production decreased substantially?>.

Despite Malthus’ view on later improvements in societies was rather far skeptic than
optimistic or, even, correct in predicting the world we are living in today, we find the
underlying philosophy intriguingly relevant for the scope of this work for two reasons. First,
it helps understand the possible causes of low or stagnant agricultural productivity even in
the presence of increasing physical capital. Second, the very reason why Malthusian theory
fails to explain the transformation from traditional economy to modern one — the
technological change?®®, makes it more consistent with stagnant and low standards of living
in the Old European countries largely based on agricultural production with no

technological improvements.

In what follows, we present the discussion of the role played by technical change in
escaping the stagnant agricultural production and the industrialization of the countries that

are rich today and how it can be relevant for the issue being raised in this work.

2Specifically, Hansen and Prescott (2002) report 22-fold increase in UK’s labor productivity from
1780 to 1989 and almost 10-fold reduction in value of land as share of GDP from 88% in 1870 to
9% in 1990.

26 Reading through Malthus, there is not a single word of ‘technology’ or a phrase of
‘technological change’ that | came across with.
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1.3.2 Pre- and Post-Malthusian Technical Change

An important feature of neo-classical growth models, developed by Trevor Swan (1956)
and Robert Solow (1956), is that in steady state per-capita income stagnates without
technological growth. However, because of two key assumptions in the model, it can
explain neither why income-per-person remained constant in the Malthusian period nor
how the economies jumped into the post-Malthusian growth stage. First, Solow (1956)
assumes constant population growth rates. But as discussed earlier, population in the
Malthusian period was strongly correlated with the level of income. Second, and more
importantly, technological change is entirely exogenous to the model. If technological
change is determined outside of the system, seven-fold difference in income-per-worker
between the Great Britain and China today must entirely be attributed to fortunate luck in

favor of the British?’.

Existing theories closely associate the transition of the developed countries from the
Malthusian stagnation with technological development, primarily, in agriculture. In fact,
technical change can precisely explain why British economy recorded successive growth
starting from the late 18" century, but China remained poor, despite both nations
experienced constant subsistence level of income up to the Malthusian period. As Dwight

Perkins (1969) describes, for centuries Chinese subsistence income was sustained due to

27 Difference in income per-worker is calculated from World Development Indicators; constant
2011 prices and adjusted for purchasing powers.
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increasing physical capital e.g. cultivated land and labor in agricultural production with
traditional technologies that generally remained unchanged. On the other hand, Patrick
Wallis, Justin Colson, and David Chilosi (2016) by collecting and analyzing old probate
and apprenticeship data, conclude that until the beginning of growth period England’s
agriculture demonstrated strong and sustained productivity growth starting from the mid-
17" century. They emphasize that industrialization would not be possible without
substantial improvements in agricultural production. Moreover, historical data in Oded
Galor and Davil Weil (2000) suggest that it was the technological change that deluded the

decreasing trend in per-capita income in European countries in post Malthusian period.

So, what triggered the technical change in European agriculture? As pointed out earlier,
propositions from the neoclassical models of growth are, generally, inconclusive about this
question?®. It was only from the late 1980’s that when new growth theories emerged?’, and
technical change was perceived to be endogenous, the scholars were able to conceptualize
the transition from Malthusian stagnation to the growth phase. The key forces behind the
European agricultural revolution are discussed to be adaptive learning in production
(Arifovic et al, 1997), increasing returns to knowledge and labor (Jones, 1999), and mutual

human capital-technology stimulation and demographic changes (Galor and Moav, 2001).

28 Hansen and Prescott (2002) assume exogenous technical change in agriculture prior to
industrialization. | will return to this issue soon.
29 See, for example, Robert Lucas (1988), Paul Romer (1990), and Gene Grossman and Elhanan
Helpman (1994) among many important others.
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Arifovic Jasmina, Bullard James, and Duffy John (1997) are among the first to formalize
the transition from stagnation to growth. Their model is characterized with two steady
states: one with low income and one with high income. Economies satiate around the low-
income state and engage into adaptive learning. Long period of learning eventually shifts
the economy towards high-income state. Arifovic et al (1997), therefore, suggest that
transformation from agriculture-based economy to industrial system is a long-lasting
process. Their approach resembles that in Charles Jones (1999) in a sense that land is
assumed to be a fixed factor of production in agriculture. Jones’ work, however, differs by
incorporating the property rights which give rise to increasing returns to knowledge and
labor. He suggests that increased scale of population increases the probability of creating
more advanced technologies and innovations. It is that increasing returns inevitably enable

the escape from stagnation.

Later, Galor and Weil (2000) present more comprehensive theory explaining how countries
move out from low- to high- agricultural productivity, and industrialization afterwards.
Their model generates pseudo - Malthusian stage where income per worker remains
constant due to fixed land/labor ratio i.e. decreasing returns to labor. Shocks to land/labor
ratio or any technical change induce only temporary gains in productivity. These temporary
gains in per-worker-income vanish once population growth increases. Malthusian pseudo-
stage eventually fades out as a result of acceleration in technology growth because of larger
scale of population. An important feature of Galor and Weil’s model is reflected on how

demographic changes succeed the accelerated technology growth. As in Theodore Schultz
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(1964), where swift technical improvements increase the return to human capital, Galor
and Weil impose ‘quality-quantity trade-off” for parents. Utility maximizing parents invest
into fewer children with more human capital than more children with less human capital.
The demographical change entails further technical change which eventually increases the
return to human capital. This vicious cycle enables the transition from low- to high-
agricultural productivity, and subsequently, to the industrialization stage characterized
with high rates of growth in income per worker and technologies, and slow to moderate

population growth.

Hansen and Prescott (2002) show that transition from stagnation to growth can take place
even if the technical change is assumed exogenous as in Solow (1956). Their model
consists of two sectors that produce one good under different technologies: the first is the
Malthusian technology where labor, capital, and land are used, and the second is the Solow
technology where only labor and capital are employed. Initially, economy operates under
Malthusian technology because Solow system is not profitable. Over time, there comes a
point where the total factor productivity is sufficiently high that agents gradually start
producing using Solow technology. Conceptually, Hansen and Prescott’s rationale

resembles the learning-by-doing framework discussed in Arifovic et al (1997).

Despite theories widely differ in assumptions, specification of production technologies,
and sequence of stages in historical economic transformation, they all have one profound
commonality: industrialization in the developed countries followed the significant

technological improvement in agricultural production. Accumulated knowledge and
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human capital development triggered productivity growth, primitively, in agricultural
sector. Sufficiently high agricultural productivity enabled the reallocation of surplus

resources and the factors of production into non-agricultural sectors.

It is, therefore, substantiated to point out that, from the historical perspective, there was no
significant productivity gap between agriculture and non-agriculture in advanced countries
in the early stages of development. Even if any, productivity gap did not embody vast
opportunities for income gains because agriculture had already been productive and only

relatively small share of labor was involved in the sector.

1.4. The Ex-ante Results and The Remaining Puzzle

In this section we discuss the part of APG that has remained unexplained or largely

controversial in the empirical literature.

1.4.1. Measurement Issues Revisited

As discussed earlier, the role of statistical discrepancies may be immense, especially, in
measuring the inputs and output in agricultural production. Despite Gollin et a/ (2014)
show that for the sample of 10 developing countries results from micro household data and
SNA are ‘surprisingly’ similar, no research has been carried out to show whether similar

conclusions hold in case of majority of other countries.

53



To examine whether statistical discrepancies create illusionary high APG, two alternative
sources of data are employed. First data originate from KLEMS?3°, which provide
internationally comparable data corrected for self- and family- employment as well as
output measurements based on various household survey data at detailed industry levels
(Kirsten Jager, 2016; Marcel Timmer, Ton van Moergastel, Edwin Stuivenwold, Gerard
Ypma, Mary O’Mahony and Mari Kangasniemi, 2007). The second source is the 10-sector
database from the Groningen Growth and Development Center (GGDC) (Timmer, de Vries,
and de Vries, 2015). There are two major advantages of GGDC dataset over national
accounts data: 1) labor data are collected from labor force surveys at household and firm
levels, and composed of all paid employees as well as self-employed and family workers
in all sectors; 2) GGDC database corrects for periodic changes in coverage of economic
activities, prices, and calculation methods, where otherwise national accounts typically

lack in consistency.

APG is measured as in equation (1). Using KLEMS data APG can be calculated for 38
countries. Data are available for 39 countries in the GGDC. The two samples overlap, and
at the same time, differ in terms of countries’ coverage. The results are presented in the
Figures 5 and 6 below. Straight lines from the origin are drawn at 45-degree. APG (raw)

implies to calculations from the National Accounts data.

30 KLEMS project is intended to create a database on measures of economic growth, productivity,
employment creation, capital formation and technological change at the industry level for all
European Union member states from 1970 onwards. A few countries from Asia have also joined
the project under the Asia-KLEMS initiative.
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Pictures generally speak for themselves, but some points are worth emphasizing. For
majority of countries, there is no significant divergence of APG calculated from the
National Accounts and the alternative sources. In case of KLEMS, countries such as Russia,
Japan, Austria, Brazil, and Bulgaria are assigned much higher APG’s comparing to SNA.
In contrast, raw APG seems to be overstated in case of Poland, Mexico, Ireland, and Czech

Republic.

Figure 6. Measurment issues: SNA vs. KLEMS

10

APG (KLEMS)

Note: APG (raw) - implied APG by the National Accounts data; APG (KLEMS) - APG calculated from KLEMS data
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GGDC data expose noticeable divergences for four low income countries. For Kenya and

Senegal APG reduces by, roughly, the factor of three. For Zambia and Botswana implied

APG increases noticeably. These naive country-wise comparisons imply that the problems

related to statistics may seriously understate or overstate the APG. However, in aggregate

terms, there are no large differences observed as summarized in the Tables 2 and 3.

Table 2. APG: National Accounts vs. KLEMS

APG (raw) Ig(l)gng) Number of Countries
Developing 3.17 3.32 18
Developed 2.28 2.22 20
Full sample 2.72 2.78 38

Non-weighted averages for 1995-2014.

On average, APG slightly increases from 3.2 to 3.3 for the overlapping sample of 18

developing countries in the KLEMS data. Implied change is negative in case of GGDC

56




dataset. For 30 developing countries that are common in SNA sample and GGDC sample,
APG decreases by, average 0.6 units. However, productivity disparities are lower for

developed countries when the alternative data are considered.

Results can be summarized as follows: a) APG implied by the National Accounts, on
average, does not significantly differ from what is observed using alternative, more reliable,
sources of data for the overlapping samples of developing countries. If any, the differences
are negligible; b) APG calculated from SNA data seems to be slightly overestimated for
the group of developed countries. However, again, the difference is small. These findings
are consistent with Gollin et al/ (2014) for developing countries and Herrendorf and

Schoellman (2012) for the US economy?'.

Hereafter, we continue by postulating that statistical discrepancies are much less important
comparing to the observed magnitude of APG across countries. If the quality of data is not

the main issue, what is next?

Table 3. APG: National Accounts vs. GGDC

APG (raw) APG (GGDC) | Number of Countries
Developing 5.31 4.65 30
Developed 1.8 1.6 9
Full sample 4.5 3.9 39

Non-weighted averages for 1995-2014.

31 One possible explanation for these conclusions can be, as mentioned in Gollin et al (2014), that
the National Accounts data on employment and value added are largely based on household
surveys.
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1.4.2. Working Hours

In the ‘home-production’ models developed by Parente ef a/ (2000) and Gollin ef a/ (2004),
because poor countries are typically characterized with large capital distortions, rural
workers tend to switch from market activities to home production activities. In home
productions despite a worker is classified into, for example, agricultural sector by her main
job assigned, in fact, she may devote muss less time to agricultural production. So, are the
working hours sufficiently high in non-agriculture that the differences can account for the

APG?

To address this question, we collected data on average weekly working hours ‘actually
worked’ per-employed in agriculture and non-agriculture. Data originate from household
income and expenditure surveys, population censuses and labor force surveys from
International Labor Organization. The sample consists of 47 countries from different

income levels. The results are surprising.
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Figure 8. Hours worked in Agriculture and Non-agriculture
(weekly, actual hours worked)
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Average weekly working hours in agriculture and non-agriculture are contrasted in Figure
8. The straight line from the origin represents the case when they are equal. Developing

countries in the figure are labeled with empty circles.

Except Portugal, in all developed countries a typical person in agriculture works more
hours weekly than her counterpart in industry and services. On average, employees in
agriculture work around 45 hours a week. For almost half of the developing countries,
hours worked in non-agriculture surpass that in agriculture. In some countries such as

Azerbaijan and Russia, average working hours are less than 40 per week in both sectors.

When summarized, the ratio of working hours between non-agriculture and agriculture

averages to 1.05 and 0.82 for the corresponding samples of developing and developed
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countries (Table 4). In the full sample, the difference is merely 5%. Overall, there seems
to be no reason to believe that differences in working hours can be a significant factor for
adjusting the APG’s observed. If not the working hours and statistical discrepancies, where
might such a huge labor productivity gap come from? This is where the most crucial, or

perhaps intriguing, part of the story begins.

Table 4. Working hours

Ratio of working hours in non-

! . Number of Countries
agriculture to agriculture

Developing 1.05 31
Developed 0.82 16
Full sample 0.95 47

Non-weighted averages for 1995-2014.

1.4.3. Wage Gaps

Can high ratio of labor productivities in developing countries be fully accrued to the ratio
of human capital in non-agriculture to agriculture? Despite the conventional wisdom that
the skill intensity of non-agricultural production is higher than that of agricultural sector,
empirical data imply that differences in human capital can only account for a modest
portion of the productivity gaps observed. In this section we discuss the wage gaps to

elaborate more on the matter.

By theory, labor is paid its marginal product. Workers with high human capital receive
higher wages. If no differences in human capital per worker exist, and if no barriers in
factor markets prevent free mobility of labor, wages should be equal between non-
agriculture and agriculture. In reality, the actual levels of human capital are different
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between the two sectors due to the nature of production, self-selection of workers based on
observable and unobservable skills and traits (Caselli and Coleman, 2001; Lagakos and
Waugh, 2013; and Young, 2013). Moreover, market frictions may also prevent the free
labor movement between agriculture and non-agriculture or, similarly, rural and urban
areas (Henderson, 2006; Munshi and Rosenzweig, 2016). The underlying message is that,
the differences in human capital and all frictions can only explain the existing wage gaps

between non-agriculture and agriculture, nothing more or nothing less.

Examining the observed wage gaps, therefore, delivers crucial insights into the contribution
of skill differences and market frictions to the APG’s implied by data. Should the average
wage gap between non-agriculture and agriculture be sufficiently large to re-establish the
accounting identity given by equation (4), there remains no more puzzle about the sectoral

productivity disparities in the developing countries.
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Figure 9. APG and Wage gaps - Developing countries
(averages over 1995-2014)
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To perform this exercise, we collected the sectoral wage data available from ILO household
surveys and KLEMS dataset. Wages are monthly, denominated in nominal terms, and
represent the average earnings of employees. As in the computation of APG’s, we
categorize the activities related agricultural production, forestry, hunting, and fishing into
‘agriculture’, and the rest into ‘non-agriculture.” Average wage gaps (AWG) are measured
as ratio of average wages in non-agriculture to that in agriculture. Final wage sample
includes 101 countries from all income levels. The stand-off between APG and wage-gap-
adjusted APG’s are shown in Figure 9 for developing countries and in Figure 10 for the
developed. The straight lines from the origin represent the case when APG and wage-gap-
adjusted APG are equal. In other words, in any given country on the straight line, the

average earnings of employees are identical in agriculture and non-agricultural sectors.
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Complementary to Figure 9 with Country codes
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Surprisingly, in all developing countries except Turkey, APG remains higher than that
adjusted for wage gaps. Countries such as Qatar, Kenya, Botswana, Uganda, Rwanda, and
Thailand with high APG’s also exhibit high wage gaps. However, remaining productivity
disparities are also high. In Botswana, for instance, wage gaps account for almost 80
percent of the APG, but labor productivity gap in non-agriculture/agriculture remains to be
around 4-fold. For a few countries such as Poland, Bolivia, and Sri Lanka, large portion of

APG can be explained by human capital differences and/or labor market frictions.

Similar conclusions can be derived for the case of developed countries. In Ireland,
Switzerland, Greece, Luxembourg, and Portugal, on average, half of the APG can be

accounted for the wage gaps. In Austria, Japan, Netherlands, and Belgium adjusted APG’s
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are below one. It is only in Canada, as in Turkey, that average wages are higher in
agriculture than in non-agriculture. In Norway and Sweden, among some others, average

earnings are similar in the two sectors.

Figure 10. APG and Wage gaps - Developed countries
(averages over 1995-2014)
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The summary of labor productivity gaps, wage gaps, and wage-gaps adjusted gaps are
presented in Table 5. Speaking of the full sample, an average worker in industry and
services are paid more than twice of the wage paid to an average agricultural worker. The
wage ratio stands at the factor of 2.1 in developing countries. The gap constitutes a smaller

factor of 1.9 in the advanced economies.
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Table 5. APG and Wage Gaps

APG Wage- APG/AWG Numbe.r of | Ratios Qf estimated
gaps Countries human capital per-worker
1.3-1.5 (Gollin et al, 2014,
Developing 3.9 2.1 1.9 79 Sample: 98 developing
countries>?)
1.9 (Herrendorf and
Developed 2.3 1.9 1.2 22 Schoellman, 2012:
Sample: US)
Full sample 3.5 2.1 1.6 101

Non-weighted averages for 1995-2014.

Since the wage gap between agriculture and non-agriculture represents the combined effect
of human capital differences as well as barriers to the migration of labor between the
sectors, by comparing the wage-gaps in column 3 to the estimated human capital
differences in Gollin ez al (2014) for a sample of 98 developing countries and in Herrendorf
and Schoellman (2012) for the United States in the last column of Table 5, two important
conclusions can be reached. First, the barriers to free mobility of labor emphasized in
number of papers such as Au and Henderson (2006) and Munshi and Rosenzweig (2016),
can explain the anything between 1.5-1.7 differences in wage gaps, hence, only that portion

of the productivity differences in the developing countries®. Second, there seems to be no

32 Adjusting for schooling quality returns average 1.4 difference in human capital between non-
agriculture and agriculture in Gollin et al (2014).

33 Munshi and Rosenzweig (2016) studies the case of India, as discussed above, where rural-urban
migration is especially high comparing to other developing countries of the same level of
economic development and size. In my computations, estimated wage gap for India equals 3.2.
This implies, information social insurance networks — ‘castes’ that are centralized in Munshi and
Rozensweig can account for at most 47% of rural-urban gaps. Similarly, the internal migration
restrictions in China as discussed in Au and Henderson (2006) can account for 68% of urban-rural
wage gaps, at most.
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barriers for labor mobility from agriculture to non-agriculture in the developed countries.

Existing wage-gaps can be solely accounted for the differences in human capital.

1.4.4. The Remaining Puzzle

The accounting identity given by equation (4) above implies that any residual that remains
after adjusting the APG to the average wage gaps should be accounted for by the ratio of
labor shares of income in agriculture to that in non-agriculture. Calculations summarized
in Table 5 reveal that even after adjusting for average wage gaps, there is a significant
portion of APG that remains unexplained in the case of developing countries. In other
words, the ratio of labor share of income in agriculture should be 1.9 times of that in non-

agriculture.

However, numerous independent estimates of the labor shares suggest that the labor share
of income in agriculture is indeed smaller than that in non-agriculture, leaving the wage-
gaps adjusted APGs puzzling. While Gollin et al/ (2014) suggest that labor shares cannot
differ very much between agriculture and non-agriculture, the evidence they invoke
actually implies that the labor share in agriculture is likely to be smaller than in non-
agriculture. Herrendorf and Schoellman (2015) claim that the labor share is 0.44 for
agriculture and 0.67 for non-agriculture in the US and that similar numbers are applicable
to developing countries as well. This claim is supported by, among others, a classic study
by Hayami and Ruttan (1970) who found, for a sample of 38 countries, that depending on

the estimation method the average agricultural labor share falls into the range of 0.34 —

66



0.49. Fuglie (2010) provides a recent review of the estimates from around the world. His
data imply that the average share of labor is 0.58 for China, India, Indonesia, Brazil,
Mexico, and sub-Saharan Africa, while the corresponding figures for the U.S. and U.K. are

0.51 and 0.52.

Even if the labor shares are assumed to be equal, in the best scenario, the remaining 1.9
factor productivity gap in developing countries is simply too large to be an outcome of
minor statistical discrepancies due to home production as suggested by Gollin, Parente,
and Rogerson (2004) or exclusion of land rents from agricultural value-added and
underreporting of proprietors’ income in official statistics in the case of the US economy

as in Herrendorf and Schoellman (2015).

It is hard to believe that overestimation of productivity gaps is the primary reason for the
breakdown of the accounting identity in equation (4). Gollin et al/ (2014), who use
household survey data to construct alternative measures of value-added by sector for 10
developing countries, find “surprisingly similar estimates of the size of the APGs” to those
computed from the SNA data. According to their calculations, “there are no countries for
which micro and macro sources paint a substantially different picture of agriculture’s share
in aggregate value added.” (p. 29). More importantly, the puzzle is amplified by the pattern
of APG over time. As illustrated in the Figure 5, the gap in the labor productivity between
non-agriculture and agriculture has tended to increase in developing countries. Since the

wage gap in the developing countries in Figure 11 has stayed relatively constant, even with
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little tendency to decline, over time, could it be that the statistical discrepancies worsened

in the System of National Accounts? It is highly implausible to believe so.

Figure 11. Pattern of wage gap: non-agriculture and agriculture
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Note: wage gap is measured as ratio of average nominal monthly earnings in non-agriculture to agriculture
Source: Calculated based on ILO data

Table 6 summarizes simple panel regressions of ratio of APG to wage gaps on time variable
for the ‘developing’ and ‘developed’ samples. In case of the developing countries, since
APG has increased and wage gaps have remained constant, the puzzling portion has
increased over time. There is no statistically significant change in either APG or AWG in

developed countries. Their ratio over time has remained relatively constant.

Table 6. APG/AWG over time

VARIABLES Developing countries Developed countries
Year 0.01%** -0.00
(0.00) (0.00)
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[0.00] [0.93]

Constant -16.37** 1.96
(6.38) (7.00)

Observations 743 206

Number of countries 79 22

Dependent variable is APG adjusted for wage gaps. Sample covers 1995-2014.
Standard errors in parentheses; p-values in square brackets
*#% p<0.01, ** p<0.05, * p<0.1

Majority of models related to APG are built on the ‘food problem’ hypothesis by Schultz
(1953). Is it possible that the ‘food problem’ has worsened? Figure 12 illustrates the change
in the depth of food deficit, measured in kilocalories per day, in 106 developing countries
from 1995 to 2015. Except some countries e.g. Tajikistan, Namibia, Zambia, Iraq,
Swaziland, Tanzania, and few more, substantial improvements in the food deficiency can
be observed in most of the developing countries. On average, the depth of food deficit has

declined almost twice from 174 kilocalories in 1995 to 98 kilocalories per day in 2015.

Figure 12. Revisiting the 'Food Problem'’
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Trade theories can also be related to the productivity differences in non-agriculture and
agriculture. But data imply that incorporating the role of trade makes the puzzle even more
intricate. Here is why: classical Hechscher-Ohlin trade theory in conjunction with Stolper-
Samuelson theorem, suggests that agricultural productivity gap in emerging economies
should decline as they get involved into more trade with the rest of the world. With relative
abundance in unskilled labor and land, developing economies should export more
agricultural goods. They should import more skill-intensive industrial products and
services. Trade should increase the value of output and income-per-worker in agriculture.
Countries tend to trade more over time, because trade increases income (see, for example,
Jeffrey Frankel and David Romer, 1999). Demand induced increase in agricultural

productivity should be followed by declining APG.

Indeed, participation of developing countries in global exchange of goods and services has
intensified substantially for the last several decades. Economic borders have been greatly
liberated from barriers to trade. From 1995 to 2013, applied tariff rates shrank almost
threefold to 6.1% in developing countries. Share of trade in GDP has increased by average
10 percentage points during 1995-2015 (Figure 13). More importantly, the share of food in
total exports of the developing countries has declined by 5 percentage points for the same

period.
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Figure 13. Trade and food exports
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In the case of developed countries wage gaps account for almost all the productivity
differences across sectors, and that average wage gap itself is fully absorbed by the human
capital differences without anything left for other frictions in labor markets. Slight residual
in APG/wage gap ratio disappears when higher quality data from KLEMS and GGDC are

considered, as shown above.

For developing countries, on the other hand, there is no way to explain the puzzle in APG
except through labor shares of income in the sectors. Estimations from literature presented
above that assign lower (or equal) labor shares in agriculture than (and) in non-agriculture
seem highly susceptible. Many of them are based on the cost shares of inputs. However, as
Fuglie (2010, p.65) points out, in case of most of the developing countries there is a lack

of representative data on factor input prices, thus the estimated labor shares of income,
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since especially in agriculture, factor inputs are farm-supplied and date on labor wages and
capital rents are not reliable. Estimating production functions and obtaining the elasticity
of labor with respect to output is another typical method of measuring labor share of income.
However, these estimates are not reliable due to some strict assumptions about production
technologies and the underlaying market structures. Hayami and Ruttan (1970), for
example, assumes that all 38 countries in their sample have same technologies and markets

are perfectly competitive.

To comprehend how biased might the labor shares be depending on the estimation
approach and type of data used, consider the example of China. When calculated using the
KLEMS database, labor share of income in agriculture is 0.89. Since KLEMS data is
corrected for home production and self-employment, and the share of the self-employed
constitutes merely 10% in Chinese agriculture sector, there is less doubt on the reliability
of the estimation. However, 0.89 is far higher than most existing estimates. For instance,
Hayami and Rutten (1985) found 0.53, and Chow (1993) found 0.4, both based on
estimations of the agricultural production function using data from the pre-reform period.
The numbers change somewhat when the cost share approach is applied to the more recent
post-reform period data. Dekle and Vandenbroucke (2012) find that the average labor share
in agriculture was 0.76 for the period 1978 to 2003, and Fan and Zhang (2002), cited in
Fuglie (2010), find 0.59 for the period 1961 to 1997 using the Chinese National Bureau of
Statistics (NBS) data. However, Wu and Ito (2015) points out that the NBS data suffer

from serious mismeasurement problems. Bai and Qian (2010), after making several
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adjustments to the NBS data, find that the share of labor income in agriculture ranges from

0.86 to 0.92, which roughly matches the estimate of 0.89 from the KLEMS data.

Lastly, Gollin ef a/ (2014) argue that the ratio of labor share of income in the accounting
identity given by equation (4) constitutes a unity based on the stylized fact about the ‘50-
50 split’ rule that is universally common in share tenancy output sharing arrangements in
agriculture. However, Otsuka, Chuma, and Hayami (1992, p.1969) points out that the *50-
50 split’ rule has no rationale grounds representing optimal allocation of output since the
contributions of land and labor are explicitly different within different production
technologies. In developing countries, where contract institutions are typically weak, the
arrangements on agricultural labor compensation are mostly based on social linking and
negotiations. Therefore, the ‘50-50 split’ rule is most likely a sociological phenomenon
rather than an efficient economic arrangement that can be applied to the empirical puzzle

in both the magnitude and the pattern of APG in developing countries.

In conclusion, except attributing the remaining 1.9 factor gap in the sectoral labor
productivity levels in developing countries to the ratio of labor shares of income, there is
no other viable way of solving the puzzle. In fact, calculating the labor shares using the
KLEMS database for a feasible sample of countries leaves nothing unexplained in the
APG’s observed. The moderately increasing trend of APG can also be captured by the
increase in the ratio of labor shares of income. Large and increasing labor shares ratio is,
in turn, can be related to the technologies that are transferred into developing countries

from abroad. All these are achieved in the Chapter II.
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Chapter 11

Comparative analysis of the historical transition of the developed countries from
agriculture-based systems to industrialization revealed that APG is not just a matter of
economic transformation. The advanced economies did not necessarily exhibit high
productivity disparities between traditional and modern sectors at the early stages of
development because agriculture was sufficiently productive before the industrialization
stage thanks to the substantial improvements in production technologies associated with
human capital development and innovations. Contrarily, due to the accessibility of
technologies from more developed countries, less developed countries tend to jump into
the industrialization stage at the cost of delaying any significant improvements in the

agricultural production, where most of their unskilled labor is stuck.

This chapter aims to achieve three sequential objectives. The first is to demonstrate that
wage-gaps adjusted APG’s in developing countries can fully be attributed to the ratio of
labor shares of income in agriculture and non-agriculture. Recalling that the pattern of
wage-gaps is relatively constant (Figure 11), all of the puzzling portion of APG and its
increasing trend must, therefore, be captured by the magnitude and the changes in labor
shares ratio. By conducting a simple accounting exercise, it is also shown that, after
controlling for capital intensities, the changes in the APG can only be accounted for by the
relative technical changes in agricultural and non-agricultural productions. Second, based
on empirical data on technology imports, it is argued that technical change in developing

countries, which takes place primarily due to technology transfers from abroad, which is
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strongly biased in favor of non-agricultural sectors. Finally, in the last section, the
relationship between relative technical change in the sectors and APG is formalized into a
two-sector, two-goods model by incorporating the heterogeneity in skill levels of labor.
Key proposition from this chapter implies that biased and increasing imports of technology
imports is an important determinant of sectoral productivity disparities observed in the

developing economies.

2.1. Reinstating the Technical Change

Labor productivity is a simple ratio of value added to the number of workers in a sector.
Value added in each sector is the total income of labor, capital, and technologies employed.
Controlling for wage-gaps, high and increasing APG, given by equations (3) and (4), imply
that the portion of per-worker value added in non-agriculture that is not accrued to labor
should be high and increasing relative to that in agriculture.

APG LS,  l-shareof Value added accrued to Kapital and Technolog y in Agriculture
w,/w, LS 1-shareof Value added accrued to Kapital and Technology in Non— Agriculture

In our concomitant work, Jong-il You and Sirojiddin Juraev (2017a), we show that the
unexplained part of the APG can be fully accounted for by the ratio of labor shares

(LS/LS»), when more alternative data from the KLEMS are used.

We compile internationally comparable data on sectoral value added, labor compensation
and capital compensation for 32 countries from the KLEMS sources. Eleven countries fall
into the ‘developing’ sample, whereas the rest are in the sample of developed countries.
Comparing to the national accounts data, factor compensation measures in KLEMS are
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much more reliable as they make up for the compensation of the self-employed through
imputations, where hourly wages of the self-employed are predicted based on the hourly
wages of the employees by controlling for educational attainment, gender and age of the
workers (O’Mahony and Timmer, 2009). Also, KLEMS data allow for the direct
computation of the sectoral labor shares for individual countries without estimating

production functions under strict and generalized assumptions.

Calculated APG’s, aggregate labor shares, labor shares in agriculture and non-agriculture,
estimated wage-gaps, as well as wage-gaps and labor shares adjusted APG’s are reported
in Table A4 in Appendices. For many countries the sample period varies depending on the
availability of data. Agriculture labor shares are calculated as the ratio of labor
compensation in Agriculture, Forestry, and Fishing to the total value added in those sectors.
Labor shares in non-agriculture is calculated in the same way. Whereby, non-agricultural
value-added and labor compensation are found by subtracting the agricultural labor
compensation and value-added from total labor compensation and value-added in the
economy.

By the accounting identity in equation (4), the APG adjusted for wage gaps and labor shares
ratio should be unity for any country. At first sight, for 13 countries in Table A4, the
identity seems to hold quite well when the accuracy is arbitrarily set at 10% level**. More

importantly, in case of the remaining 19 countries in the sample residuals from the adjusted

34 India, Finland, Malta, Germany, Great Britain, Greece, Latvia, Netherlands, Belgium, Cyprus,
Russia, Australia, China.
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APG exceeds the 10% critical level. The primary reason for the failure to establish the
accounting identity for majority of the countries in Table A4 is related to the
mismeasurement of the labor compensation data, as we show in You and Juraev (2017a).
The measurement errors are found to be the direct consequence of presence of the self-
employed in both agriculture and non-agriculture. When a predominant portion of labor in
any sector is self-employed, the imputed wages in the KLEMS data cannot incorporate for
all unobservable characteristics of the workers. As O’Mahony and Timmer (2009) point
out, due to the absence of data on more comprehensive characteristics, the wage
imputations in KLEMS should be considered cautiously. Labor shares being unrealistically
high, exceeding unity, in some cases reported is a clear evidence of the very

mismeasurement iSSue.

The lower the share of self-employed in a sector, the higher the accuracy of the wage-
imputations, thus, the higher the reliability of computed labor share for that sector should
be. To test this proposition, in You and Juraev (2017a), we select five countries (China,
Czech Republic, Malta, Slovakia, and Russia) from the sample where the share of
employees exceeds 80% of labor in both agriculture and non-agriculture. Indeed, we find
striking evidence that these countries do not exhibit any significant divergences from unity
in APG’s adjusted for wage gaps and labor shares ratio. The fully adjusted productivity

gaps range from 0.97 on the lower end to 1.16 on the higher®>. It is equally important to

35> Computed APG/Wag Gap/Labor share ratio constitutes 0.97 for Malta, 1.07 for Russia, 1.09
for China, 1.11 for Slovakia, and 1.16 for Czech Republic.
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point out that for three of these countries, estimated labor shares in agriculture is higher
than that in non-agriculture. This finding contradicts most of the empirical estimates that
consistently assign relatively lower labor shares to agricultural sector as discussed in the
previous chapter. No grounds, thereof, remain to believe that labor shares in agriculture is
universally lower than in industry and services for all countries, where the differences in

production technologies may be significant.

Sample averages of fully adjusted productivity gaps for developing and developed
countries are reported in Table 7. Overall, when more reliable data on labor shares ratio are
used, the puzzle in the wage-gaps adjusted APG’s vanishes to a significant extent. It almost

completely disappears for the sample of less developing economies.

Table 7. Summary of Labor Shares (KLEMS) and Adjusted Productivity Gaps

Sample LS, LS, LSG APG / wage gap Number of
(LSa/ LSn) APG/ wage gap LSa/LSn countries
Developing 0.84 0.54 1.56 1.63 1.04 11
Developed 0.79 0.62 1.27 1.43 1.12 21

Source: Jong-il You and Sirojiddin S. Juraev (2017a)

Increasing pattern of APG in developing countries imply that the ratio of labor shares
(LS«/LS,) must be increasing. In other words, the share of labor compensation in agriculture
must be increasing and/or that in non-agriculture must be decreasing. Earlier, in the
beginning of this section, the difference between value added and labor compensation is
decomposed into compensation for capital and compensation for technologies in each

sector. To understand whether the increasing labor shares ratio (LS./LS,) is a consequence
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of the increasing capital and/or technology intensity in non-agriculture relative to
agricultural production, it is necessary isolate the per-worker-income of capital and

technologies from each other and observe their pattern over time.

In practice, capital more freely moves across sectors comparing to labor. The return to each
dollar value of capital can, therefore, be assumed equal between agriculture and non-
agriculture. By calculating the per-worker-capital ratio between the sectors and analyzing
its trend over time, one can roughly see whether labor shares ratio portion of APG has

changed due to changes in the relative capital intensities, or not.

To undertake this raw accounting exercise, the data on the physical capital stocks for
agriculture are obtained from the Food and Agriculture Organization’s (FAO) databases.
Agriculture is composed of agriculture, forestry, and fishing activities. Observations are
made internationally comparable by reconciling them into ISIC Rev.3 classifications.
Based on country characteristics and statistics from OECD and the UN, FAO provides
calculations on the agricultural capital stock using traditional perpetual inventory method.
Non-agricultural capital stock is computed by subtracting the agricultural capital stock
from aggregate capital stock in the countries. The estimates of the aggregate capital stock
are available from the World Penn Tables. As in FAO methodology, aggregate capitals are
also calculated using perpetual inventory methods by applying relevant depreciation rates
to the distinguished the types of assets (Feenstra, Robert C., Robert Inklaar and Marcel P.
Timmer, 2015). Sample with relevant capital stock data for the period of 1994-2014

consists of 164 countries from all income levels.
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Calculated relative capital intensities are depicted against observed productivity gaps in
Figure 14°S. Straight line represents the linearly estimated best-fit estimation. There seems
to be a weak, but positive relationship between capital and labor productivities. Countries
represented by the largest magnitudes of APG’s such as Senegal, Botswana, Kenya, Bhutan,
and Burkina-Faso also exhibit largest gaps in per-worker capital in non-agriculture to
agriculture. At the same time, in the countries where the productivity disparities are similar,
for instance, Uzbekistan and Kyrgyzstan, significant variations are present in the ratios of

per-worker-capital levels.

Figure 14. APG and Relative per-worker capital intensity
(developing countries)
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36 |llustrating the wage-gaps adjusted APG’s instead does not alter the conclusions significantly.
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Inferences from Figure 14 partially vindicate the findings in Caselli (2005) and Lagakos
and Waugh (2013) in a sense that capital intensities cannot account for large portion of the

productivity differences.

The pattern of the capital-per-worker ratios over the sample period is illustrated in Figure
15. The vertical axis measures the natural logarithm of the ratio of capital-per-worker in

non-agriculture to that in agriculture.

The difference in relative capital intensity is overwhelmingly large in the developing
countries. In fact, the difference translates into 55-fold! The gap is around the factor of 2.5
in the case of developed economies. More surprisingly, the relative capital intensities have

remained relatively constant in both samples!

Figure 15. Ratio of per-worker-capital in non-agriculture to agriculture
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In per-worker terms, the stable relative capital intensities imply that the changes in the
labor shares ratio can only be explained by the relative technical changes in non-
agricultural and agricultural production technologies. Controlling for physical capital,
labor, and land, Caselli (2005) also demonstrates that a significant portion of labor
productivity gap in agriculture can be accounted for by total factor productivity differences
in developing countries. Restuccia et a/ (2008) show that the barriers to adoption of
intermediate inputs can be an important determinant of sluggish labor productivity growth
in agriculture. In Juraev and You (2017b), we highlight the role of output market
imperfections defined by monopoly powers resulting from technical change in non-

agricultural sectors to explain the changes in relative labor shares.

The key finding from the accounting exercise in this section is that the rate of technical
change is more intense in non-agriculture comparing to that in agriculture. In what follows
next, a brief implication of endogenous growth theory shows that technical change in
developing countries take place, mostly, due to adoption of technologies from developed
countries. Empirical data on imports of technologies and equipment present solid evidence

on the bias observed in favor of non-agricultural sectors.

2.2. The Observed Bias

The importance of technologies for development has gained immense attention in the
endogenous growth literature (Romer, 1993; Prescott, 1998, among many critical others).

One important pillar of the endogenous growth theories distinguishes how technical change
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takes place in the rich and the poor states. Accordingly, extensive stock of available
technologies and knowledge enables the rich states to produce most of the new
technologies, whereas the technical change in the poor countries takes places, primarily,
though the transfers from the more technologically advanced states. Acemoglu and
Zilibotii (2001) observe that over 90% of world R&D expenditures came from the OECD
countries in 1997. Similarly, according to World Development Indicators, as of 2011, over
65% of the total number of new patents, and two-third of global high-tech exports originate

from the advanced states.

In empirical research, measuring the level of technologies or technology transfers remains
to be a challenging task. Technologies are, generally, believed to move across countries
through trade, foreign direct investments (FDI), licensing, franchising, and many other
channels. The measurement problem is due to the abstractness or embodied nature of
technologies. In this work, technology transfers are measured directly as imports of
machineries and equipment, classified under SITC 7 of United Nations Conference on
Trade and Development (UNCTAD)?". For the last two decades, imports of machineries
and equipment constitute roughly one third of total imports by developing countries. One
key advantage of using SITC 7 is that it provides detailed categorization of machineries

and equipment imported. The subsection 72, for instance, distinguishes the technologies

3’More on the measurement issues are discussed in the third chapter.
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imported for agricultural production from those for non-agricultural sectors. This allows to

observe the relative intensity of technology transfers in the sectors.

Changes in the ratios of agriculture specialized technology imports to total sector-
specialized (SITC 7, Subsection 72) as well as total machinery and equipment imports
(SITC 7) are presented in Figure 16. Observations imply that, during the sample period,
over 90% of the total sectors-specialized technology imports were specialized for non-
agricultural production, whereas less than 10% was for agricultural use. Share of
agriculture-specialized technologies make up mere 1% of the total imports of machineries

and equipment by developing countries.

Figure 16. Bias in technology transfers implied by data

(developing countries)
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Note: Calculated based on UNCTAD data
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Investments into technologies, irrespective of whether into their development or adoption,
are endogenous i.e. driven by profit-maximizing incentives for firms (Romer, 1990;
Grossman and Helpman, 1994). More new technology adoptions in a sector imply that the
share of income going to capital owners, rather than workers, tend to increase. Since
relative capital intensities have remained constant, as shown above, any change in the
portion of APG represented by the ratio of labor shares must be associated with relative
technical change through technology transfers, which is found to be significantly biased in

favor of non-agricultural production according to the empirical data.

The primary explanation to the observed bias originates from the technology-skill
complementarity hypothesis, which claims that technical change tends to favor the more-
skilled rather than the less-skilled workers. The earlier roots of the hypothesis can be traced
back to ‘The Theory of Wages’ by John Hicks (1932). In the concept of elasticity of
substitution between production factors, Hicks emphasized the increasing scale of ‘labor
saving’ technologies developed. In response to increasing costs of labor — what Hicks
observed in the 1930’s, profit-seeking firms tend to introduce inventions that carry
relatively higher marginal product/cost ratio. ‘Labor-saving’ technologies increase the
marginal product of capital relative to labor and discriminates a subgroup of labor out of
production. Not surprisingly, the group of less-skilled labor becomes the primitive victims
of such a continuous process. Increasing scale of factor-cost-induced technological
progress eventually results in increasing productivity gap between more-and less-skilled

workers.
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The technology-skill complementarity hypothesis has been preponderantly discussed in
literature. For example, by formulating labor demand as basic constant elasticity of
substitution function of more- and less-skilled workers, Violante (2008) shows that biased
technical change increases the productivity of more-skilled labor, which further increases
the demand for such workers. The process turns cyclical. His model well fits into the

observed data. Similar concepts underlie in Acemoglu (2002) and Galor and Moav (2000).

Implication of technology-skill complementarity hypothesis to the impact of technology
transfers on agricultural productivity gap in developing countries evolves threefold. First,
since the production in non-agriculture is of more skill-intensive nature, available
technologies embody skilled workers. Available stock of skills allows the adoption of new,
usually men-power-saving technologies. Second, there is discrimination of labor with
various skill levels in each sector. Decisions on how many of the skilled and unskilled labor
to employ are made by rational, profit maximizing producers. Finally, due to the
availability of relatively more skilled labor in non-agriculture, technology transfers tend to
be biased in favor of that sector. The vicious cycle kicks in, where better technologies
allocate more of skilled labor into non-agriculture and this further intensifies the bias in the
relative technical progress. In each stage of the vicious cycle there is equilibrium where
agricultural productivity gap is determined by the inter-sectoral division of, heterogenous
in skills, labor as well as existing skill premium. These propositions are formalized in a

simple model in the following section.
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2.3. The Model

Consumers

Economy produces two goods: agricultural (Y,4) and non-agricultural (Yy). There are M
individuals with homothetic and quasi-concave preferences. Individual utilities (u;) are

represented by following constant elasticity of substitution (CES) function:
'y
u, (A, N) = (¥} +A-a)y])” (1)

Where, « is the share of non-agricultural good, y=(y—1)/y and y is elasticity of
substitution between Y4 and Yy. If y=0 goods are perfect complements; if y =
consumers perceive the products as perfect substitutes, and with y =1 utility function
simplifies to the popular Cobb-Douglas form. Hereof, ¥ is assumed to be less than 1
implying that agricultural and non-agricultural goods are ‘gross complements3®’ for
consumers. Despite there is no empirical estimation of ¥ within this specific context,
consumers purchase food (agricultural) and non-food (non-agricultural) goods in
conjunction, hence, these goods rather complement each other. This assumption plays an

important role in later sections.

38 Term ‘gross complements’, as in Acemoglu (2002), implies to the case when elasticity of
substitution between factors of production is less than unitary. Similarly, ‘gross substitutes’ refer
to elasticity of substitution being higher than 1.
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Markets are perfectly competitive and prices (pn, ps4) are exogenously determined.

Equilibrium levels of Y4 an Yy maximize:
M
jl u(AN)di  (2)

First order conditions imply:

BRCIE

Y, pyl-«a

It can simply be shown thatd(Y, /Y,)/d(py / p,) =—x , i.e. relative increase in the prices of
any good decreases its aggregate relative demand.

Producers

There are two sectors in economy: agriculture and non-agriculture. Producers in each sector
employ any combination of skilled (S) and unskilled (U) labor. We stick to ‘the
conventional wisdom’ that production in non-agriculture is assumed to be more skill-

intensive than that in agriculture®.

Production functions are in generalized CES forms:

Y, = A(a(AASA)p +(1-a)U¥ )l/p and Y, = A(n(ANSN)P +( —n)Uﬁ)”” @)

39 See, for example, Caselli (2005).
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Where A sums the pervasive technologies available universally across sectors; a and » are
shares of skilled labor in production; 44 and 4w are technologies that are sector specific
and augment the skilled labor only. S4 (Ua) and Sy (Ux) are number of skilled (unskilled)
workers in agriculture and non-agriculture, respectively. p=(o—1)/o, where o is the
elasticity of substation between skilled and unskilled labor in production, assumed to be
same in both sectors for simplicity. It is further assumed that o >1, which implies
producers treat skilled and unskilled labor as gross substitutes. This assumption is not only
intuitionally plausible but also in compliance with available empirical estimations on

elasticity of demand between educated and uneducated workers*’.

Marginal products in each sector are positive (0Y/0S >>0and 0Y/0U >>0) and there are

diminishing returns to factors of productions (0°Y/8S* <<0andd’Y /6U* <<0). Pervasive
technological improvements increase the marginal product of both skilled and unskilled
workers, whereas sector-specific skill-biased technical change improves the productivity

of the skilled in each sector.

There are two rather complementing assumptions. First, there is free mobility of labor in
and across sectors. Second, in equilibrium wage rate for the skilled is identical in both
agriculture and non-agriculture. Same is true for the unskilled. Intuition behind this

assumption is straightforward: if a skilled worker in agriculture is paid higher wage than

40 See, for example, Richard Freeman (1986). Elasticity of substitution between skilled and less
skilled workers is estimated to be in the interval of 1 and 2.
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his counterpart in non-agriculture there will be flow of skilled workers into agriculture

from non-agriculture until differences in wages are dispersed off.

Labor supply is assumed to be fixed, so is the total number of the skilled and the unskilled
workers. Total number of the skilled and the unskilled is divided between the two sectors

and there is full employment:

Wy =Wy =W

WU =WUA =WUN
S=8,+8, 5)
U=U,+U,

L=S+U

Without the loss of generality, number of producers in each sector is normalized to unity.

Given above assumptions, producers face following optimization problem to produce Y4

and Yy demanded by consumers:

max [pY —(wgS +w,U)]

First order conditions provide relative demand for S and U in each sector.
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S * alw, L o
(ﬁl = {w—l} ©

There are three implications of the derived relative demand equations. First, increasing cost
of unskilled labor increases the relative demand of skilled labor. Second, skill-biased
sector-specific technological change increases the demand for skilled workers in both
sectors since o >1( relative demand for skilled labor is elastic with respect to relative
wages). Third, denoting /=S/U as a measure of skill-intensity in the sectors, relative wages
for skilled and unskilled workers are irrelevant for relative skill intensities (/4/Iy), which
on the other hand is in positive relationship with relative sector-specific skill-biased

technology levels (44/An):

raes =l
1, Ay n||l-a
With constant returns to scale in production, applying Euler’s law of zero profits and equal

equilibrium wage conditions in (5), intersectoral division of labor can be formulated in

terms of relative prices and sector-specific technologies as:

AT e o
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Equations in (7) define the optimal equilibrium allocation of skilled and unskilled labor in
the economy between agriculture and non-agriculture. Two points are worth emphasizing.
Relative increase in the skill-biased sector-specific technologies in favor of non-
agricultural production allocates relatively more skilled labor to non-agriculture.
Increasing relative price of Yy attracts more of the skilled workers into production of Yy if
and only if elasticity of factor demands by producers surpasses the elasticity of demand for
goods by consumers. In other words, as long as employing more skilled workers does not

bring about any marginal losses to producers.

Equilibrium APG

APG is measured as the ratio of average per-worker value added in non-agriculture (4Px)

to that in agriculture (4P4). Defining the skill premium by w=w/w, and using the zero

profit conditions in each sector and APG can be redefined as:

WSN+UNXSA+UA
wS,+U, S,+U,

APG == AP, | AP, = (8)

Further, from equations (7), conditionally denoting the right-hand side terms as & and m:

S, =kS, and U, =mU, )
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With little algebra, using equilibrium labor supply conditions in (5), model can be closed
and APG can be represented as a function of prices, wages, technologies, consumers’ and

producers’ constant elasticity terms:

G WS (1+m)+mU (1+k)  WS(1+m)+U(1+k)

— — s — — 10)
KSA+m)+mU(Q+k) S(U+m)+U(1+k)

First and second terms in (10) correspond to average worker productivity in non-agriculture

and agriculture, respectively.

Technical change and APG
Implicitly, productivity gap between agriculture and non-agriculture is related to technical

change through skill premium and relative skill intensities:

APG = [l A4y / 4),1(4y | 4] (1)

Therefore, to demonstrate that any increase in An/A4 will increase APG, proving following

two conditions will be sufficient:

81nAPG>
ow

@) 0

omd4p, _, . 4P,

(i) ——2N 50 gnd —— 14
O(Ay 1 A,) O(Ay 1 A,)

93



With some tedious calculus, it can be shown that partial derivative of APG with respect to
skill premium is positive if and only if £>m i.e. proportionately more skilled workers settle
in non-agriculture than agriculture*'. From factor demand equations (6) any increase in 44,
An, or both results in higher skill premium in economy. Figure 2 summarizes an example
of a new equilibrium in inter-sectoral factor demand market resulting from technical

change in agriculture.

Figure 10. Skill premium and labor allocation with technical change
in agriculture

we /! Wy Agriculture w. / W,  Non-agricufture

I, I,
Increase in A4 shifts the relative factor demand curve to the right resulting in higher
skill premium inagriculture {wil). Due to free mobility of labor some of skilled labor
from non-agriculture moves into agriculture. In new equilibrium w*=w0, skill

intensity is higher in agriculture and lower in non-agriculture.

S/U), N S7U),

Initially, economy is in equilibrium with skill intensities IJ in agriculture and I3 in non-
agriculture, and equilibrium skill premium of W, . Relatively intense technical change
shifts the demand for the skilled labor in agriculture. Without barriers to the mobility of

workers and fixed number of the skilled in economy, a portion of the skilled labor moves

41 Oln APG B
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(k—m)( SU 1+ k)1 +m) >0 if k> m

WS (14 m) +mU (1+ k) WS (1 + m) + U (1+ k))
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out from non-agriculture into agriculture. A portion of the unskilled in agriculture is
released into non-agriculture due to new technologies. The economy satiates at new
equilibrium characterized with higher skill premium W and relatively higher skill intensity
in agriculture. The opposite holds in case of a more intense technical change in non-

agricultural sectors.

Second condition (77) states that in equilibrium relative improvement in Ax/Aa increases
the per-worker value added in non-agriculture and decreases that in agriculture.
Corresponding partial derivatives show that propositions hold provided w>1, k>m, and
o >1%2, Skill premium being higher than unity is a conventional axiom — that, the skilled
labor is paid more than the unskilled. The proposed impact of technology transfers on

productivity gaps in developing countries is quantified in the following section.

L R 750+ BRAIES

oA, /A4,) WS(1+m)+U (1+k)S(m+1)+U(1+k)\ P, A, -«

M:(W—l)(k—m)(ﬁ—l){(A mST (1+m) }[PNJ ) (ANJ (a

oAy /A,) WS (1+m) +mU 1+ k) kS (1+m)+mU 1+ k) | P, ) | 4,
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Chapter lll. Estimations, Results, and Inferences

Formal framework presented in the previous chapter implies that relatively rapid technical
change in a sector increases the skill premium in the economy and, more importantly, the
skill-intensity of production in that sector relative to others. Technical change in
developing countries takes place, mostly, due to technology transfers from more advanced
economies, which are observed to be strongly biased in favor of non-agricultural
production according to empirical data. Our theoretical propositions, therefore, attribute
the changes in the puzzlingly large and increasing portion of APG in developing countries
to the technology transfers.

In this chapter we quantify our postulations using two sets of estimations. In the first
specification, the impact of technology imports on productivity gaps is estimated on
longitudinal data from 1995 to 2014. Technology imports are instrumented using predicted
values based on geographical and proximity factors as well as the innovative intensity of
technology producers. In the alternative specification, we estimate the impact of
technology imports into non-agriculture relative to agriculture by controlling for dynamic
persistence of APG over time. Results from both specifications provide strong support for

our theory.

3.1. Estimation Specification

In a naive form, the structural equation that represents the linear relationship between

technology transfers and productivity gaps takes the following form:
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APG,, =B+ X, + Zﬂkq) u;, (3.1
=

Where, APGi; is agricultural productivity gap in country i in year #; X;, is technology
transfers into country 7 in year #; u;~e;i+vi, error term composed of fixed country effects
(ei) and time-variant idiosyncratic error term (v;;); and @ is a vector of other related

covariates.

Simple OLS is likely to be biased for two reasons. Firstly, it is impossible to control for all
relevant covariates, thus, omitted variables might be correlated with the technologies
imported. Consider, for example, outward migration of skilled workers from developing
countries. In theory, since more of the skilled work in non-agriculture than in agriculture,
outward skill migration should have negative impact on APG. Similarly, skill migration
may induce more technology transfers if the skilled discover profitable technologies abroad
and send them home. On the other hand, skill migration may drain the domestic pool of the
skilled and deteriorate the demand for foreign technologies at home. Omitting the outward
skill migration from the structural equation may result in upward (downward) bias in the
estimated coefficient of technology imports if the relationship between technology
transfers and outward skill migration is positive (negative). Secondly, there is also a
potential problem of reverse causality. By theory developed in this work, APG might be
induced by technology transfers, but simultaneously, countries with low aggregate

productivity may have less capacity to engage into international exchange of goods and
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services and, consequently, enjoy less technology spillovers from world markets. In

technical terms, the £, in (3.1) will be inconsistent if following condition does not hold:

Cov(xig ui)=0  (3.2)

Removing country fixed effects (e;) is not a sufficient solution since it is highly likely that
unobserved time-variant errors (v;;) may contain covariates correlated with the technology
transfers. To overcome this endogeneity problem, in the subsequent sections, we construct
an instrument for technology transfers to isolate its impact on APG from other possibly
omitted factors. Before going into the details of the instrument, some light should be shed

on the issues related to measuring the technology transfers.

3.2. Measuring Technology Transfers

Despite common recognition of the importance of technology transfers for development,
measuring them has remained a difficult task. Prominent channels through which
knowledge cross borders include trade, migration, foreign direct investments, and direct
transfers through licensing and patenting (Hoekman, Maskus, and Sagii, 2004). Early
works such as Coe and Helpman (1995) approximate the amount of technology transfers
as trading partners’ R&D capital stock weighted by observed bilateral import shares. They
measure the R&D capital stock using the well-known investment perpetuity method.
However, results they obtain are sensitive to depreciation rates applied. Later Coe,
Helpman, and Hoffmaister (1998) use the share of bilateral machinery and equipment
imports as weights for trading partners’ R&D capital stock. Applying equal weights to the
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foreign R&D stock, on the other hand, provide surprisingly similar conclusions as shown
by Keller (1998). According to Mayer (2000) the reason why different weights yield
similar results is the public good nature of knowledge. He argues that bilateral trade
intensity should play no role, but it is the volume of technology imports that matter for the
host economies. Coe and Helpman (1995) and Coe, Helpman, and Hoffmaister (1998)
additionally employ a simple sum of the R&D capital of trading partners in quantifying the
impact of cross-country technology diffusions on home countries’ productivity levels.
Measuring technology transfers seems sensitive to underlying assumptions, especially,

those in quantifying the R&D capital stock of trading partners.

Moreover, there are two major caveats in measuring the technology transfers as weighted
foreign technological capital. To understand why, consider a hypothetical case where
technologies are transferred into a less-developed country A from countries B and C.
Assume that C is more technologically advanced than B. Assume further that 90% of 4’s
total imports are composed of grain from country B, and 10% of A’s total imports are
composed of actual technologies from country C. In this case, measuring technology
transfers into A as import-share-weighted R&D capital in countries B and C would be
strongly biased. Because imports from B into A does not carry any technologies, whether
embodied or disembodied, yet B’s technological capital stock receives most of the weight
applied. Weighting the foreign R&D capital stock, by applying bilateral shares in whether

trade or direct investments, is as if the weights are predetermined. However, we cannot
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override the possibility that the corresponding shares might be determined by the

technological capital stock of advanced countries, and not the other way around.

Another approach to measuring technology diffusions is to utilize the data on patenting.
For instance, Eaton and Kortum (1999) use the patenting data to fit their technology
diffusion model to the sample of five leading research countries: the US, Germany, UK,
France, and Japan. However, this approach cannot be easily applied to the case of
technology transfers into developing countries because of the unavailability of

international patenting data.

A more direct approach is taken in this work. Technology transfers is measured as the
imports of machinery and equipment — classified as Section 7 of Standard International
Trade Classification (SITC) of United Nations Statistics Division as of Rev.3 in 2016. On
average, machinery and equipment imports constitute roughly one third of total
merchandise imports by developing countries, and three fourths of them originate from
developed countries. The subsection 72 of SITC 7 represents the volume of technology
imports that are specialized for distinct industries. As discussed above, there is a strong
bias in the technology transfers when imports of machinery and equipment are considered.
On average, 93% of the specialized technology imports are for non-agricultural use,
whereas only 7% 1is for agriculture production. The key characteristics of technology
imports by developing countries for the period of 1995-2004 are summarized in Table A2

in appendices.
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3.3. Construction of Instrument

We construct an instrument for technology imports, X, in a modified framework of Jeffrey
Frankel and David Romer (1999). Frankel and Romer use the cumulative sum of bilateral
trade determined by geographical and proximity factors as an instrument for trade. A
similar approach can be utilized in this work since technologies imported by each country
i in year ¢ is cumulative sum of bilateral technology imports between the country i and the
rest of the world. For example, total technology imports by Uzbekistan for any given year
is the sum of technologies the country imports bilaterally from the US, Russia, Korea,

China, and the remaining other partners.

The gravity model, the details of which are too popular to be discussed here, implies that
bilateral trade between two countries is positively correlated with their sizes and negatively
related to the distance between them. Each set of bilateral technology imports can also be
estimated as a function of geographical and proximity factors. The sum of bilateral
technology imports predicted based on the exogenous factors should serve as an instrument
for actual technology imports. However, direct application of Frankel and Romer’s
approach does not work in our case. Because, geographical factors and size variables alone
cannot explain why one country is importing different scale of technologies from two
different countries that are of same sizes and are equally far from (or close to) the importer.
In other words, the equation (3.1) cannot be identified using the geographical and proximity
factors alone. For identification there must be some other factor determining the technology

transfers, and not affecting the dependent variable.
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Assume country A is on equal distance from countries B and C with equal sizes, both
economically and geographically. If country A is importing more technologies from B
comparing to C, then B must have a competitive advantage in producing technologies than
C (putting politics aside). Countries producing more, and better technologies are the ones
that invest more into research and development. But do countries producing new
technologies want to sell them directly? Maybe ‘yes’, maybe ‘no.” After all, it is not
relevant. Schumpeter’s ‘creative destruction’ induces technology creators export more
technologies given they create new ones more intensively. Because we do not distinguish
the types of technologies imported, whether new or old, R&D intensity of exporting
countries should be an important determinant of technology flows into the developing
countries. At the same time, R&D intensity of one country is unlikely to be a determinant
of agricultural productivity gap in another country. Therefore, measuring and including the
inovative intensity of exporting countries into the gravity model of bilateral trade of

technologies should enable us to identify and estimate the equation of interest.

The innovative intensity of a country can, roughly, be measured by the share of aggregate
R&D spending in its GDP. By incorporating related geographical and size factors,
following equation can be estimated on bilateral technology imports to construct an
instrument for actual technology imports:

In(x, ; )=, +(RD/GDP),, +a, InDist, ; + a; In Dist, ; *(RD/GDP), , + (3.3)

+a,InPop,,+asInPop,, +agIn Area; + a; In Area, + a, L, + oL,
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Where, x;; is the imports of technologies by country i from country j in year ¢; ‘i’ refers to
the importing country and ‘j° denotes the exporting country; Dist;, is the distance between
most populated cities of countries i and j; Pop is the population in year t; Area is the area
of the countries measured in sq.km; (RD/GDP);; is the R&D expenditure as percentage of

GDP in country in year ¢ L is a dummy equal to unity if country is landlocked.

The underlying intuition behind (3.3) is straightforward. Bilateral technology transfers
between two countries are positively correlated with their sizes, which is approximated by
population, and negatively correlated to the distance between them. People in countries
with larger geographic areas tend to trade relatively more inside the country and relatively

less with other countries. So, a, and &, are expected to be negative. Bilateral technology

imports should be comparatively less if one or both countries are landlocked, since the
landlocked countries face higher transportation costs. Technology exports should be higher
in the countries with higher R&D intensity. The coefficient of the interactive term,
Dist;j*(RD/GDP);, should be negative since ‘attractiveness’ of the technological intensive
exporters to the importing country tend to fade out over the longer distances, or equally,

higher transportation costs.

The data on bilateral imports of machinery and equipment is available from the United
Nations Conference on Trade and Development (UNCTAD), geographical and proximity
variables are provided in CEPII database, and the missing geographical data are compiled

from other sources without any threats to the credibility of the quality of data.
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A challenging step in estimating the equation (3.3) is that the R&D data is not universally
available. We collect the R&D/GDP ratio from different sources including World
Development Indicators, OECD datasets, and the UN statistical units. For the case of some
low-income countries for which the pertinent data are not available, R&D/GDP ratio is
assumed to be zero. This should have negligible impact on the results since technologies
are mostly imported from the advanced economies. The summary statistics of the variables

included in the equation (3.3.) are provided in the appendices.

Table 8. Estimation of Instrument: Bilateral technology imports

(RD/GDP); 3.65%%* log(Distancej;) -1.09%**
(0.06) (0.01)

log(Population;) 0.67%** Landlocked; -0.80%**
(0.00) (0.01)

log(Population;) 0.85%#* Landlocked; -1.20%**
(0.00) (0.01)

log(Areai) -0.05%** log(Distance;;)*(RD/GDP); -0.18***
(0.00) (0.01)

log(Areae) -0.3 1% Constant 0.64%**
(0.00) (0.08)

Observations 431,825

R-squared 0.48

Root MSE 3.02

Notes: Dependent variable is the log imports of technologies from country j into country i. Sample
covers the period of 1995-2015. Subscripts i and j refer to importing and exporting country,
respectively. RD/GDP is the ratio of research and development expenditure to GDP; Distance;; is the
simple distance between most populated cities of countries i and j; Landlocked is a dummy variable
and is equal to 1 if country is landlocked. Area is the geographical territory measured in sq.km. Robust
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Results from estimating equation (3.3) are summarized in Table 8. In general, they are
consistent with the theory. The impact of exporter’s research intensity is, indeed,
overwhelmingly large. Specifically, 1% increase in the share of R&D spending in GDP of
the technology exporting countries is associated with average 3.7% increase in the bilateral
flows of machinery and equipment into the importing country. Larger countries, in terms
of population, tend to exchange technologies more. Nations with larger geographical areas
are less inclined to import technologies as larger territories induce more internal, than
external, trading. Being landlocked significantly reduces the technology transfers for both
technology exporting and importing countries. Contrasting the estimated coefficients for
landlocked dummies and area variables provide interesting inferences. In both cases, the
magnitude of estimated negative impact is smaller for the importer. This is because demand
for technologies are originating from the importers, they seem to be less sensitive to the
geographical obstacles such as being landlocked and having large territories comparing to

the exporting countries.

In the next step of instrument construction, bilateral technology imports from the
estimations in Table 8 are predicted linearly. Since predicted values are in log forms, they
are raised to exponentials and cumulated for each country in each year over all trading
partners as:
X it = Zea‘H
i#]

Where, H is the vector of variables in equation (3.3).
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The cumulative sums (X, ,) represent part of the technology imports by country i in year ¢

that is solely explained by geographical and proximity factors, as well as the innovative
intensity of the exporters. The key assumption for the validity of the constructed instrument
is that the APG observed in a country is not affected by the R&D intensity of other
countries except through technologies imported. We will return to this issue in the

robustness section.

3.4. Testing the Quality of the Instrument

Despite conditional independence given by (3.2) may now be satisfied, how ‘strong’ might
the constructed instrument be? Weak relationship between the constructed IV and the
actual technology imports seriously undermine the credibility of the estimations. To check
for the quality of the instrument, a simple ‘first-stage-like’ exercise can be performed. To
do so, we run a panel GLS on the actual technology transfers and the predicted ones*. The

results are summarized in Table 9.

As shown in the first column of Table 9, in general, the relationship between actual and
predicted technology imports is positive and statistically significant. Just the constructed
instrument itself and the constant term capture 54 percent of variations in actual
technologies imported. Inclusion of the variables representing the economic and
geographic sizes reduces the estimated coefficient by almost one third, from 0.57 to 0.44.

Both population and area are important determinants of technology imports, the impact of

43 This is the first step in IV estimations.

106



the former being larger. Comparing columns (3) and (4) reveals the approximate

contribution of the constructed instrument in explaining the actual imports of technology

and equipment. Not surprisingly, it is around 15 percent. Because the instrument is

estimated over 1995-2014, and the geographical variables are constant over years, one

should not expect large variations in instrument. In fact, except population, the only time-

variant factor in the (3.3) is the R&D expenditure of the technology exporters.

Table 9. Actual and predicted technology transfers

VARIABLES (1) (2) 3) 4
log(Predicted Technology Transfers) 0.57%%* 0.47%%%  (.44%%*
(0.03) (0.03) (0.04)
log(Population) 0.71%%%  1.Q7%** 2.55%
(0.08) (0.16) (0.16)
log(Area) -0.43%%* -1.25%%*
(0.11) (0.14)
Constant 2.44%x* -6.45%** 6 38F** -10.93%**
(0.57) (0.94) (0.95) (1.32)
Observations 4,240 4,240 4,240 4240
R-squared 0.54 0.57 0.54 0.39
Number of countries 206 206 206 206

Notes: Dependent variable is log of actual technology transfers. Simple RE GLS estimations. Robust

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Overall, geographical factors, size variables, and innovative intensities of partner

economies do explain significant portion of technology imports both across countries and
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over time. This allows to proceed with the estimation of the structural equation (3.1) using

the constructed instrument.

3.5. Technology Transfers and APG: Estimation Results

Simple panel OLS estimations are presented in the Table 10. The dependent variable is
APG — the ratio of labor productivity in industry and services to that in agricultural sector.
Columns (1) to (4) summarize the ‘random effects’ specification with different
geographical factors included for the sample of 150 developing countries. The panel is
unbalanced, with some countries having number of observations as small as one for the

entire sample period of 1995-2014.

In the first column, the estimated coefficient of interest is statistically significant. The
second specification controls for latitude and the dummy, which is equal to 1 if the country
is landlocked. There is a solid rationale for the inclusion of latitude and landlocked dummy
into the structural equation. The dependent variable is the ratio with the denominator being
agricultural productivity. Agricultural productivity is strongly correlated with the climate
that can be represented by the latitude to a certain extent. The estimated coefficient for
latitude is negative and statistically significant implying that the countries on higher
latitudes seem to have climate more suitable for agriculture. On the other hand, the
landlocked countries may have lower land quality, thus, higher APG’s. The results imply
APG’s is higher by 1.6 units in landlocked countries comparing to non-landlocked
countries. Column (3) also controls for continent dummies. The dummy is 1 if the country
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is located on the representative continent. The benchmark, or the omitted, continent is the
America and the Pacific. Results imply that the productivity gap is higher in African
countries by over 3 units. The European developing countries, on the contrary, have APG’s
lower than the benchmark group by, average, 1.5 units. The Asian economies seem not to
differ from the America and the Pacific in terms of the APG’s implied by data. Inclusion

of the continent dummies does not change the estimated coefficient of interest.

All geographic and continent dummies are estimated jointly in the column (4). Due to
multicollinearity, coefficients on latitude and Africa dummy decreases slightly, yet they
remain statistically significant. The Europe and landlocked dummies become insignificant.
This is natural as there is strong correlation of the continent dummies with the latitude and
the landlocked dummies. It is important to point out that the coefficients on all dummies
and the latitude are lower comparing to cross-section estimations. These factors do not

change over time, whereas the dependent variable is time-variant.

The column (5) is estimated by removing the country fixed effects. Surprisingly, the time-
invariant country specific variables included in column (4) seem to capture the most of
impact from the aggregate fixed effects since coefficient on the technology imports
increases merely moving to column (5). Comparing column (1) and column (5), although
there 1s 0.03 points increase in the coefficient of interest, the change is statistically
significant since the relative change in the variance matrix is even smaller. In fact, the

estimated p-value on the Hausman Chi-square is 0.008.
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The specification in column (5) removes all the unobserved time-invariant variables.
However, as discussed earlier, omitted time-variant factors still pose a doubt on the
estimated impact of the technology imports on APG. The column (6) controls for two-way
error components. The universal effects of time across countries are controlled for by
including year dummies. The estimated coefficient increases substantially to 0.47. The
null on the joint insignificance of the year dummies is rejected at 1% confidence level.
Since the inclusion of year dummies does not control for omitted country specific time-
variant factors, the results in column (6) can, by no means, treated as final. By contrast,
year dummies may absorb the partial effect of technology imports that is universal over

time across countries.

The columns (7) and (8) summarize the results for the developed countries and the full
sample by removing the country-fixed-effects. Despite being positive, the impact of
technology imports is both economically and statistically insignificant for the ‘developed’
sample. This, indeed, complies with the thorough discussion in previous chapters. In the
case of full sample, including both developing and developed countries, 1 percent increase
in the technology imports is associated with average 0.4 units increase in APG. It is lower

comparing to that in column (6) due to the inclusion of the developed countries.
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Table 10. Basic panel OLS results

Sample Developing countries Developed Full sample
(1) (2) 3) 4 (%) (6) (7) (8)
VARIABLES RE RE RE RE FE FE FE FE
log(Technology Imports) 0.26%*  0.27**  0.27**  0.28** 0.29%* 0.47*** (.08 0.41%%*
(0.11)  (0.11) (0.11) (0.11) (0.13)  (0.17) (0.17) (0.16)
Africa dummy 3.32%%k 3 Fwck
(0.85) (0.86)
Europe dummy -1.49%** (.36
(0.57) (0.89)
Asia dummy 0.30 1.21
(0.73) (0.85)
Latitute -0.06%** -0.05%**
(0.01) (0.02)
Landlocked 1.59%#* 1.03
(0.79) (0.79)
Year dummies no no No no No yes***  No yes*H*
Constant 0.49 0.85 -0.58 -0.57 -0.02 -242 0.78 -2.15
(1.58)  (1.68) (1.53) (1.57) (1.79)  (2.20) (3.04) (2.14)
Observations 2,644 2,644 2,644 2,644 2,644 2,644 439 3,083
R-squared 0.02 0.03 0.00 0.03
Number of countries 150 150 150 150 150 150 23 173

Dependent variable is APG. Sample covers the period 1995-2014. RE=Random effects, FE=Fixed effects.
Continent dummies equal to 1 and 0 otherwise. Landlocked=1 if country is landlocked, O otherwise.
Columns (1) to (6) summarize the results for developing countries. Column (7) and (8) are for developed
countries and full sample, respectively. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, *
p<0.1. Joint significant indicated on year dummies.

The constructed instrument can now be used to isolate the impact of technology transfers
from that of omitted time-variant factors affecting APG. The size variables are used to
obtain the predicted technology imports, so they are controlled for in the IV estimations

presented in Table 11 below.

The first column in Table 11 is an analogous version of column (5) in Table 10 with the
size variables added. Controlling for the size, the estimated coefficient of interest increases

from 0.29 to 0.36. Countries with more population tend to exhibit lower APG, on average.
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This might seem controversial. If population variable increases the technology transfers,
which have positive impact on APG, by theory, why the relationship between the
population and APG might be negative? The reason is that the direct impact of population

seems to override its positive impact through technology imports.

Table 11. IV-estimation results

Specification FE FE-IV FE-IV
(1) (2) 3)
VARIABLES Developing Developing Low and

middle income

log(Technology Imports) 0.36%** 0.55%#* 0.56%**

(0.12) (0.13) (0.14)
log(Population) -0.66 -1.31%* -1.20%*

(1.06) (0.69) (0.68)
Constant 9.37

(16.03)
Observations 2,644 2,644 2,171
R-squared 0.02 0.01 0.01
Number of countries 150 150 119
Endogeneity 0.08 0.09
Underidentification 0.00 0.00
Weak Identification 783 5 132.0

Kleibergen-Paap Wald F

Notes: Dependent variable is APG. All estimations control for country fixed effects. Sample period is 1995-
2014. Import of technologies is instrumented using constructed technology transfers. Chi-sq(1) P-values
reported for underidentification and endogeneity tests. Stock and Yogo (2005) critical values apply to

weak-identification F-stat. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The second column in Table 11 summarizes the IV estimation results controlling for

country fixed effects. Estimated impact of technology transfers increased to 0.55 from 0.36
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in column (1). The null of it is being equal to zero is rejected at 1% critical level.
Accordingly, 1% increase in imports of technologies increases the APG by 0.55 units.
Change in the estimated coefficient is negligible when the sample of developing countries

1s restricted to low- and middle-income countries as classified by the World Bank.

The implied endogenity tests reject the null of technology imports being exogenous. The
underidentification and weak identification tests also reject the underlying null hypotheses.

Kleibergen-Paap F-stat well exceeds the Stock and Yogo’s (2005) critical value of 16.4.

3.6. Robustness Checks

The key assumption in the construction of the instrument was that the research and
development expenditure of technology exporters has no direct impact on APG in the
importing countries except through technology imports. However, it is common that
economies with intensive innovative activities also engage into foreign investments in
developing countries. If so, the exclusion restriction on the RD/GDP will not be valid. To
check whether the results in the IV estimations are robust to the critical exclusion
assumption made, estimations in Table 12 control for the inflows of foreign direct

investments (FDI).

The data on FDI is available from WDI for 147 developing countries. The first column of
Table 12 is the baseline the fixed effects-1V estimation. The FDI inflows are included in
the second column. The impact of the direct investments is positive, but it is significant

113



neither economically nor statistically. The coefficient on technology imports slightly
reduces from 0.52 to 0.51. In the first column, small but positive impact of FDI seems to

be partially captured by technology transfers.

Conclusions from the Table 12 are still not adequate for the validity of the exclusion
restriction used in the construction of the instrument. This is because, besides FDI and
technology imports, there are other channels through which R&D intensity of the trading
partners may affect the sectoral productivities in developing countries. However, due to
the paucity of data representing the alternative impact-channels of R&D intensity of the
technology exporters, the inferences from the IV estimations in Tables 11 and 12 should

be made with caution.

Table 12. Alternative channels of technology transfers

(1) ()
VARIABLES FE-IV FE-1V
log(Technology Imports) 0.52%**  (.5]**

(0.14) (0.20)
log(Population) -1.14 -1.14

(0.75) (0.75)
log(FDI inflows) 0.01

(0.06)

Observations 2,493 2,493
R-squared 0.01 0.01
Number of countries 147 147

The dependent variable is APG. Sample includes developing
countries for 1995-2014. Robust standard errors in parentheses
*HE p<0.01, ** p<0.05, * p<0.1
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Inclusion of the other variables relevant to APG is the subsequent part of the robustness
checks as summarized in Table 13. In general, due to weak of multicollinearity, inclusion
of additional variables results in slight changes in the estimated coefficient of interest. The

main conclusion, however, remains robust.

Results in Table 13 allow us to derive important inferences regarding several theoretical
propositions, namely, capital intensity, barriers for using intermediate inputs in agriculture,
barriers for labor mobility between agriculture and non-agriculture, as well as the ‘food

problem’ commonly used to explain the APG’s observed in the developing countries.

In the previous chapters, we emphasized the importance of differences in capital intensity
across non-agriculture and agriculture. Marginal product of labor is low in a sector with
relatively less capital. Therefore, relatively higher capital intensity in non-agriculture than
that in agricultural might be one factor resulting in high APG’s. The column (1) is the
baseline fixed-effects IV estimation. The column (2) controls for the ratio of monetary
values of capital in non-agriculture and agriculture. The estimated coefficient for capital
ratio is statistically different from zero. Both the coefficient of interest and its standard
error slightly increased. Same is true for the population’s coefficient. Findings support the
hypothesis that capital plays important role in explaining the productivity gaps among the

developing countries as in Caselli (2005) and Vollrath (2009).

Alternative stream of theories has pointed out the barriers for using inputs in agricultural

production e.g. Restuccia et al (2008). We control for the fertilizer usage per arable land
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(column 3) as well as per agricultural land (column 4). Different countries use different
types of fertilizers. To make them comparable, we measure the fertilizers as a cumulative
sum of three most common chemicals i.e. nitrogen, phosphate, and potash in metric tons
of plant nutrients. Both land and fertilizer data are available from FAO. The estimated
coefficient is negative as expected. However, the null of impact from fertilizer per arable
land being zero can be rejected at a lower confidence level. The impact is statistically
significant at 10% critical level when fertilizer per agricultural land is considered. 1%
increase in fertilizer use per unit of land is associated with APG being lower, on average,
by 0.14 units. The impact from fertilizer use might be conditional on various factors such
as land quality. Due to measurement issues, however, we lack reliable data on land quality
to control for. The estimated marginal impact from the technology imports increases from
0.55 in baseline to 0.58 in column (4). Controlling for fertilizer use seems to leave out a
portion of APG that is more correlated with the technology transfers. However, the change

is statistically insignificant as the standard error of the coefficient doubles to 0.27.

In columns (5) and (6), we include the variables that approximately represent the barriers
for labor mobility from rural to urban areas. Agriculture is a rural production, in general.
Barriers for labor mobility tend to keep the labor in rural areas, hence, in agricultural
production. More labor directly and negatively correlated with the implied labor
productivity. The coefficients for share of rural population and the growth of rural
population are positive, as expected. For instance, 1 percentage point increase in rural

population growth increases the APG by, average, 0.2 units. The coefficients are
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statistically different from zero corroborating the theories emphasizing the importance of

labor market frictions.

Table 13. Inclusion of related covariates

(1) (2) 3) 4) (5) (6) (7)
VARIABLES FE-IV  FE-IV  FE-IV FE-IV  FE-IV FE-IV FE-IV
log(Machinery Imports) ~ 0.55%** (. 57*** (.57** (.58%*  (.58%** (.5]%** (.54%**

(0.13) (0.14)  (0.27) (0.27)  (0.12) (0.12) (0.16)
log(Population) -1.31%  -1.56%*% -3.77* -3.74*  -0.74 -0.98 -1.18%*

(0.69) (0.76)  (1.97) (1.97)  (0.68) (0.63) (0.63)
log(Capital ratio, N/A) 0.22%#*

(0.08)
log(Fertilizer per hectares -0.12
of arable land) (0.08)
log(Fertilizer per sq.km of -0.14*
agricultural land) (0.08)
Share of rural population 0.04**
(0.02)
Growth of rural population 0.18**
(0.07)
log(Food deficit) 0.44%**
(0.11)

Observations 2,644 2,409 1,397 1,397 2,644 2,608 2,053
R-squared 0.01 0.02 0.02 0.02 0.02 0.02 0.03
Number of countries 150 133 127 127 150 147 109

Sample includes developing countries and number of observations varies depending on availability of data.
Capital ratio is the ratio of total capital (monetary values) in non-agriculture to that in agriculture. To make
the fertilizer usage internationally comparable, we use three most common chemicals: Nitrogen, Phosphate,
and Potash measured in metric tons of plant nutrients. Share of rural population is the % of total population
living in areas classified as rural. Growth of rural population is the annual % growth of the rural inhabitants.
Food deficit is measured as the depth of food deficit in daily kilocalories per person. Robust standard errors
in parentheses. *** p<(0.01, ** p<0.05, * p<0.1
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In the last column (7) of the Table 13, estimations control for an arbitrary factor
representing the prevalence of food shortage in the countries, measured as the depth of
food deficit in daily kilocalories per person. This helps to examine, from the empirical
point of view, whether the ‘food problem’ of Schultz (1953) applies to the sectoral
productivity gaps observed in the developing countries. Results imply that 1% increase in
daily food dietary deficiency per person is translated into 0.44 unit increase in the implied
APG, on average. The effect is statistically and economically significant. The coefficient
on technology imports, on the other hand, decreases to 0.54 comparing to the baseline in
column (1). The change is statistically insignificant considering the differences in

estimated standard errors.

Tests conducted so far show that the estimated coefficient of interest is robust to inclusion
of alternative channel of technology transfers and does not significantly change when
relevant covariates are controlled for. In the subsequent section, we present a discussion
on whether ‘technology transfers-APG’ hypothesis still holds when alternative estimation

specifications are considered.

3.7. Dynamic Panel Instrumental Variable Estimations

Due to the weak cross-country explanatory power of the instrument constructed and
possibly dynamic prevalence of APG over time, findings from the previous section may
well be subject to skepticism. Therefore, we provide further empirical evidence, using
dynamic panel specifications, in support of the ‘technology-transfers induced APG’
hypothesis. In doing so, we can take advantage of the availability of data on sectoral
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decomposition of subsection 72 in SITC. Subsection 72 includes ‘machinery specialized
for particular industries’, which is further broken down to details groups*. Hereafter, we
consider subsections 721 (Agricultural machinery) and 722 (Tractors) as ‘agricultural
specialized technology imports.” Subsections 723 to 728 are classified into ‘non-
agriculture specialized technology imports.” To directly control for the observed sectoral
bias in technology imports, we include the ratio of ‘agricultural specialized technology

imports’ to ‘non-agriculture specialized technology imports’ into the dynamic estimations.

In table 14, estimation results for the full sample of 125 developing countries over 1995-
2015 under dynamic specifications are summarized. We start with simple random-effects
generalized least squares estimation summarized in the first column. The estimated
coefficient for the ratio of non-agricultural to agricultural technology imports is positive
and statistically highly significant. To account for common trends as well as country-fixed
effects, year and country dummies are included in column (2). The coefficient of interest
slightly increases to 0.31 and remains statistically significant. Potential limitations of the
specification in column (2) are threefold. First, the ratio of sector-specific technologies

maybe correlated with time-variant unobservable variables. Second, time dummies may

44 SITC Section 72 is divided into following groups: 721 - Agricultural machinery (excluding
tractors) and parts thereof, 722 - Tractors, 723 - Civil engineering and contractors' plant and
equipment; parts thereof, 724 - Textile and leather machinery and parts thereof, n.e.s., 725 -
Paper mill and pulp mill machinery, paper-cutting machines and other machinery for the
manufacture of paper articles; parts thereof, 726 - Printing and bookbinding machinery and parts
thereof, 727 - Food-processing machines (excluding domestic); parts thereof, 728 - Other
machinery and equipment specialized for particular industries; parts thereof, n.e.s.
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capture a portion of the actual impact of relative technology transfers on productivity gaps,
resulting in underestimation of the true coefficient of interest. Finally, ordinary estimations
incorporate neither the dynamic persistence of APG nor the lagged effects of technology

imports on APG. These limitations are tackled in the subsequent modifications.

In column (3), we include three lags of both APG and the ratio of sector-specific technology
imports without country and year dummies. The results show that dynamic impact of APG
stretches to two years prior to the given year, but that none of the lagged relative technology
imports is significant in explaining APG’s. The magnitude of the impact of the
contemporary relative technology imports decreases to a third, while remaining statistically
significant. This estimation still suffers from possible contemporaneous correlation
between the relative technology imports and omitted variables. We drop the statistically
insignificant lags of both dependent and independent variables and control for country-
specific and common trends in column (4). The coefficient of interest slightly increases to
0.12, and its statistical significance improves due to the exclusion of correlated lags of the
independent variable. The results from column (4) are still subject to potential estimation

bias due to unobserved time-varying variables not captured by common time trends.
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Table 14. Dynamic panel I'V-estimation results

(D () 3) “) (5) (6) (7)
VARIABLES REGLS REGLS  Dynamic Dynamic AB- AB-‘system”  AB-‘system”
OLS OLS ‘difference dynamic panel dynamic panel
" dynamic one-step two-step
panel
L.apg 0.81%** 0.64%** 0.55%** 0.84%** 0.82%**
(0.07) (0.05) (0.06) (0.06) (0.07)
L2.apg 0.27%** 0.19%** 0.18%#* 0.16* 0.16*
(0.07) (0.05) (0.07) (0.09) (0.08)
L3.apg -0.06 0.00 -0.04 -0.04
(0.07) (0.05) (0.07) (0.08)
log(mach N _A) 0.26%**  (.3]%** 0.10* 0.12%* 0.17* 0.17** 0.18%**
(0.10)  (0.11) (0.05) (0.05) (0.09) (0.08) (0.06)
L.log(mach N A) -0.03
(0.07)
L2.log(mach N A) -0.04
(0.06)
L3.log(mach N A) 0.01
(0.05)
Constant 2.85%** D DTHAH 0.03 0.22 -0.29 0.00
(0.31) (0.35) (0.05) (0.20) (0.20) (0.00)
Observations 1,248 1,248 813 911 731 819 819
Number of 125 125 74 77 71 74 74
countries
Country fixed no yes no Yes - - -
effects
Year fixed effects no yes no Yes No yes yes
R-squared 0.06 0.68
Number of 374 93 93
instruments
Arellano-Bond test
for AR(2) in first
differences (p- 0.11 0.47
value)
Hansen Test (p- 0.94 0.94
value)

The dependent variable is APG. Sample covers the developing countries from 1995 to 2015. AB=Arellano-Bond. L# is the #" lag
of corresponding variables. Mach N A is the ratio of non-agriculture specific technology imports to those specialized for
agricultural production. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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The conclusive estimation outcomes are presented in the last three columns. In column (5),
all right-hand side variables are instrumented by their all available lagged differences in
compliance with Arellano and Bond’s (1991) GMM specification of Anderson and Hsaio
(1981) methodology in order to treat for the possibly contemporaneous endogeneity of the
variable of interest. In column (6), the estimation model is specified as a ‘system’ where,
in addition to controlling for year-fixed effects, variables-in-levels are instrumented by
lagged differences and variables-in-differences are instrumented by lagged variables in
levels (Arellano and Bover, 1995; Arellano and Bond, 1998). The number of instruments
is reduced from 374 to 93 in minimally arbitrary way by selecting the most relevant
instruments in terms of correlations and estimated eigenvalues (See, for example, Mehrhoff,
2009 and Bai and Ng, 2010). Column (7) is a simple two-step speciation of column (6),
where the estimated standard errors are corrected for possible downward biases as
suggested by Windmeijer (2005). The estimated coefficients for the relative technology

imports do not change significantly among columns (6), (7), and (8).

The results from dynamic modifications suggest that 1% increase in the ratio of non-
agricultural-to-agricultural technology imports tends to increase the productivity gap
between the sectors by 0.18. The estimated Hansen-statistics do not reject the validity of

the instruments used.

Overall, the results from both panel FE-IV and dynamic panel IV estimations provide
strong and robust empirical evidence for the hypothesis that technology transfers

deteriorate the sectoral productivity disparities in developing countries.
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Summary and Conclusions

Using the national accounts data, we found that labor productivity gap between non-
agriculture and agriculture in 153 developing countries constitute the factor of 4, on
average, for the period of 1995-2014. The gap is negatively associated with the level of
income and signifies large potentials for improvements, especially, in the poor countries,

where majority of labor are engaged in agricultural activities.

Roughly, the half of the magnitude of the gap can be attributed to the differences in human
capital and barriers for free intersectoral mobility of labor. However, the remaining half
has remained unexplained. Moderately increasing trend of the gap over time further
amplifies the puzzle in literature. In this work, we presented a thorough examination of the
productivity gaps in developing countries and presented a theory that leaves nothing

ambiguous.

To begin with, we explored whether the productivity gaps are illusionary consequences of
mismeasurement of value added and labor in national accounts data (Parente ez al, 2000,
Gollin et al, 2004). Using more consistent, corrected for self- and family-employment and
output measures, data from household and firm-level surveys in KLEMS and GGDC
sources, we showed that there are no significant differences in the APG’s calculated for the
developing countries common in the comparing samples. Our findings vindicate similar

conclusions for a smaller sample of 10 developing economies in Gollin ef a/ (2014). In the
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sample of developed countries, the productivity gaps are found to be slightly overestimated

in the national accounts data as in the case of the US in Herrendorf and Schoellman (2012).

Labor productivities are calculated as the ratio of value added to number of workers in each
sector. To check whether productivity gaps differ when measured using labor hours instead
of headcounts, we collected data on weekly working hours ‘actually worked’ from the ILO
labor force surveys for 47 countries. When averaged, not surprisingly, working hours in
non-agriculture and agriculture came up to be almost identical in the case of 31 developing
countries. For the remaining 16 developed countries, we found a nontrivial difference in
the actual weekly working hours between the sectors. In general, our data-checking
exercises showed that productivity gaps in the developing countries are real and cannot

simply be attributed to miscalculations or the quality of national accounts data.

Further, we discussed the wage gaps between non-agriculture and agriculture to account
for the human capital differences (Caselli and Coleman, 2001; Lagakos and Waugh, 2013;
Young, 2013; Gollin et al, 2014; Herrendorf and Schoellman, 2012) and labor market
frictions preventing free labor mobility (Henderson, 2006; Munshi and Rosenzweig, 2016).
Our computations using monthly wage rates from labor force surveys showed that the wage
gaps constitute the factor of 2.1 for a sample of 79 developing countries, where the average
corresponding productivity gap stood at 3.9. Relying on the ratio of human capital levels
between 1.3 and 1.4 from Gollin et al (2014), our inferences imply that from 1.5 to 1.7

factors of productivity gaps can be attributed to labor market frictions. In other words,
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relatively larger portion of productivity disparities result rather from barriers to labor

mobility than human capital differences in developing countries.

The pattern of wage gaps exhibited relatively constant trend. Based on this observation, we
presented that not only a significant portion of productivity gaps remains unexplained even
after adjusting for wage-gaps but also the puzzling portion tends to increase over time. Raw
implications of neither trade theories nor the ‘food problem’ hypothesis of Schultz (1953)
seemed to provide any further plausible explanations. We concluded that the residual
between productivity gaps and wage gaps cannot be explained except through labor shares

of income.

Despite majority of empirical estimations assign equal or lower labor shares to agriculture
comparing to non-agricultural sectors, there are significant variations in the estimated
parameters depending on the underlying assumptions imposed. Labor shares are claimed
to be roughly equal in Gollin et al (2014), whereas relatively lower in agriculture in
Herrendorf and Schoellman (2012). On the contrary, we argued that the problems in
measuring the labor shares of income evolve due to the presence of self-employed in the
sectors and the resulting complications in imputing the worker compensations. Using more
quality data on labor compensation and value added for a small sample of 11 developing
countries, we showed that nothing much remains unexplained in the APG’s observed when
correct labor shares are applied. Our results were found especially convincing for the
countries where the self-employed make up small portion of labor in both agriculture and

non-agriculture.

125



By conducting a basic accounting exercise, we demonstrated that changes in the ratio of
labor shares of income can primarily be ascribed to changes in relative technologies in non-
agricultural and agricultural productions. The relationship between relative technical
change and productivity gap was formalized in a two-sector, two-good model with
heterogenous skill levels in labor. In our formal framework, technical change that is more
intense in one sector would encourage the accumulation of skilled labor, which would
further induce more technical change in that sector relative to the other. Division of skilled
and unskilled labor in economy is determined by demand of profit maximizing firms in
contrast to the supply side decisions in Lagakos and Waugh (2013) and Young (2013),
where workers self-select into non-agriculture and agriculture based on observable and
unobservable skills. Evidencing on the bias in technology imports, we proposed that the
technology transfers from abroad is an important determinant of changes in APG levels in

developing countries.

We empirically substantiated our theory using two sets of panel instrumental variable
estimations and obtained solid supporting evidence. In the initial estimations, results
implied that 1% increase in the imports of machinery and equipment would induce 0.55
units increase in the productivity gap levels in developing countries. By controlling for
dynamic persistence of APG, in the second set of estimations, we found that 1% increase
in the ratio of non-agriculture specialized technology imports to those specialized for
agriculture production would increase the productivity gaps by, on average, 0.18 units.

Estimated impacts of technology transfers on APG’s are found to be robust to inclusion of
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related covariates such as relative capital intensities, fertilizer use in agriculture, share of

rural population and its growth, and the depth of food deficit.

Overall, our findings imply that significant productivity disparities are not a typical
manifestation of industrialization and development. In that sense, the theoretical
propositions presented in this work challenge the appropriateness of technologies
transferred into, especially, poor countries. New technologies created in advanced
countries are typically best fitted for the level of development and local market conditions,

which tend to match with those in less developed states to a limited extent.

Our empirical findings corroborate longstanding views that without technical change
traditional agricultural production technologies deliver decreasing returns at increasing rate
(Theodore Schultz, 1953, 1964; Arthur Mosher 1966; Yujiro Hayami and Vernon Ruttan,
1985; Peter Timmer, 1988). High and increasing labor productivity gaps in developing
countries suggest that the central importance of agriculture in development, at least in terms
of the existence of large pools of less productive workers in the sector, seems yet to be
tackled properly. Surplus resources appear to be predominantly directed to non-agricultural
sectors at the cost of delaying agricultural, perhaps overall, development. Intense adoption
of sector-biased technologies seems to encourage unbalanced development path in the

developing economies.

Particularly, our analysis and results suggest that, in the short run, development policies

ought to emphasize on the elimination of barriers to free labor mobility between agriculture
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and non-agriculture, or equally, rural and urban areas. In the long-run, governments should
pay greater attention to technical change in the agricultural productions, whether through
domestic development or adoption of appropriate technologies from more advanced
countries. Accumulation of human capital in the economy, overall, would make more
skilled labor available for both traditional and modern sectors to embrace technical changes
more easily and consistently. Our suggestions require more rigorous welfare and policy

analysis for implementation, which we leave for future work.
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Appendices

Table Al. Summary statistics of variables used to compute APG

Variables N Mean | Median | Max | Min
Share of agricultural value added in GDP (%) | 176 | 14.03 9.7 54 0.07
Share of non-agricultural value added in GDP | 176 | 85.97 90.3 99.9 |46
(%0)
Share of employment in agriculture (%) 176 |28.3 19.1 88.5 |0.12
Share of employment in non-agriculture (%) 176 | 71.7 80.9 99.8 |11.5
APG 176 | 3.92 2.6 225 |04

Note: Country averages over 1995-2014 are reported.

Figure A1. Labor productivity relative to US: agriculture vs. non-agriculture
(developed countries)
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Figure A2. Average APG over 1995-2014
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Table A2. Summary Statistics of Key Variables
Variables Obs Mean Std. Dev. | Min Max
log(Machinery Imports) 175 14,51 2,38 9,63 20,23
In(Population) 175 15,60 2,03 9,88 20,98
In(FDI inflows) 174 20,12 2,32 13,70 25,98
In(Area) 175 11,50 2,49 3,97 16,65
In(Capital ratio, N/A) 159 4,09 1,02 1,51 7,61
In(kg of Fertilizer per hectare of arable land) 154 4,06 1,80 -1,13 8,84
In(kg of Fertilizer per sq.km. of agricultural land) 154 7,42 2,10 1,31 13,36
Share of rural population % 176 44,79 23,26 0 90,33
Growth of rural population % 173 0,54 1,54 -5,75 4,81
Depth of food deficit (daily kilocalories per person) | 111 125,30 | 94,62 4 392,19
Share of technology imports in total imports (%) 168 24,62 7,65 11,46 49,63
Share of agrlcultur.aﬂ te(:)chnologles in total imports of 175 8.11 5.4 0.46 35,04
sectoral technologies (%)
Share of 'zlgrlcultural technologies in total technology 175 0,92 0.86 0.007 4,53
imports (%)
Rat.lo of non—agrlgulmre specialized technology to 175 3117 37.96 2,08 227.11
agriculture specialized technology

Notes: Country averages over 1995-2014 are reported.
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Table A4. Accounting Identity Breakdown using Alternative Labor Shares from KLEMS

No.| Countries Sample Ls Ls, LS, LSG APG | AWG | APG' | APG"”
period
1 | Australia 1995-2007 061 | 053 | 062 | 0.86 1.42 1.52 0.93 1.08
2 | Austria 1995-2014 0.67 176 | 065 278 | 3.92 2.12 1.85 0.67
3 | Belgium 1995-2014 063 | 069 | 063 1.11 1.96 17 115 1.04
4 | Canada 1995-2010 058 | 042 | 058 | 073 1.23 1.8 0.96 132
5 | China 1995-2012 05 089 | 041 217 | 536 2.26 237 1.09
7 | cyprus 1995-2007 059 | 052 | 059 | o0.88 1.82 1.98 0.92 1.05
8 | Czech Republic | 1995-2007 059 | 063 | 059 1.08 1.68 136 1.24 1.16
10 | Denmark 1995-2007 0.68 0.7 0.68 1.03 1.93 1.62 1.19 1.16
12 | Estonia 1995-2007 057 | 055 | 057 | 097 1.74 1.54 113 1.16
13 | Finland 1995-2014 066 | 092 | 065 1.43 2.12 1.54 1.38 0.97
14 | France 1995-2014 067 | 099 | 066 1.52 2.1 1.74 121 0.8
9 | Germany 1995-2014 067 | 099 | 067 147 | 275 1.89 1.45 0.98
15 | Great Britain | 1995-2014 063 | 071 | 063 1.08 1.94 1.77 1.09 1.01
16 | Greece 1995-2007 056 | 081 | 055 147 | 351 234 15 1.01
17 | Hungary 1995-2007 06 055 | o061 | 094 | 131 1.61 0.81 0.86
6 | India 1995-2012 049 | 054 | 048 112 | 5.49 5.4 1.02 0.91
18 | Ireland 1995-2007 056 | 093 | 055 169 | 402 1.67 241 1.42
19 | Italy 1995-2014 064 | 084 | 064 132 | 211 1.94 1.09 0.83
20 | Japan 1995-2009 061 | 049 | o061 | 081 | 3.63 3.28 111 137
21 | Korea 1995-2007 052 | 064 | 051 123 2.93 138 212 1.72
24 | Latvia 1995-2007 053 | 088 | 052 169 | 351 2.03 173 1.02
22 | Lithuania 1995-2007 053 | 073 | 051 145 | 357 1.81 1.97 137
23 | Luxembourg | 1995-2007 0.56 1.03 | 055 185 | 3.87 1.74 214 1.15
25 | Malta 1995-2007 057 | 041 | 058 | o071 1.07 1.56 0.69 0.97
26 | Netherlands | 1995-2014 069 | 071 | 069 1.02 1.49 1.42 1.05 1.03
27 | Portugal 1995-2006 0.66 12 0.64 185 | 458 1.99 23 1.24
28 | Russia 1995-2009 0.55 0.8 0.53 161 | 246 1.43 1.72 1.07
29 | Slovakia 1995-2007 05 0.46 0.5 0.91 1.4 138 1.01 111
30 | Slovenia 1995-2006 0.75 283 | 068 | 417 | 3.9 123 3.22 0.78
11 | spain 1995-2014 065 | 038 | 066 | 058 1.9 2.38 0.8 1.38
31 | Sweden 1995-2014 056 | 069 | 055 127 1.65 1.16 1.42 113
32 | USA 1997-2009 062 | 075 | 062 1.20 1.61 1.79 0.89 0.74

Notes: LS= labor share in GDP; LS, = labor share in agriculture; LS» = labor share in non-agriculture; LSG = LSa/LSn;
APG* = APG/AWG; APG** = APG*/LSG. Labor shares are calculated from EU-KLEMS; APG from WDI; AWG from
ILO. Country averages over the respective sample periods are reported.
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