ECONOMIC ANALYSIS OF ENVIRONMENTAL IMPACTS FOR THE APPRAISAL DECISION OF ODA PROJECTS: A CASE STUDY OF A KOREAN EDCF DAM PROJECT

By

KIM, Kihwan

THESIS

Submitted to
KDI School of Public Policy and Management
In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF DEVELOPMENT POLICY

2018
ECONOMIC ANALYSIS OF ENVIRONMENTAL IMPACTS FOR THE APPRAISAL DECISION OF ODA PROJECTS: A CASE STUDY OF A KOREAN EDCF DAM PROJECT

By

KIM, Kihwan

THESIS

Submitted to
KDI School of Public Policy and Management
In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF DEVELOPMENT POLICY

2018

Professor Baran HAN
ECONOMIC ANALYSIS OF ENVIRONMENTAL IMPACTS FOR THE APPRAISAL DECISION OF ODA PROJECTS: A CASE STUDY OF A KOREAN EDCF DAM PROJECT

By

KIM, Kihwan

THESIS

Submitted to

KDI School of Public Policy and Management

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF DEVELOPMENT POLICY

Committee in charge:

Professor Baran HAN, Supervisor

Professor Sungsu CHOI

Professor Kye Woo LEE

Approval as of December, 2018
This research aims to check that how valuation of socio-environmental impacts in a cost-benefit analysis (CBA) affects the investment decision of official development assistance (ODA) project. A dam construction project gives significant impacts to the surrounding sites. The assessment of the impacts is important because it can save potential ex-post costs to prevent any opposition and enhance aid effectiveness from the incurred overrunning costs of large dam projects. With conventional CBA for direct costs and benefits, indirect impacts such as biodiversity losses are quantified by revealed references and inserted into the CBA. The alternative case is analyzed if it deserves to be invested, and compared with the original case. Together sensitivity analyses are performed with NPV, B/C Ratio, and EIRR. As a result, both of the cases indicate that the project is economically feasible. Although environmental costs reduce the net benefit, the sales benefit is strong enough to promote the project, which is sensitive to the benefit. If all the indirect variables are additionally valuated in the CBA and incorporated with other methods including the environmental impact assessment (EIA), the project decision could be made more accurately. Now it is inevitable to apply the adjusted CBA to fully understand the reality.

Keywords: Cost-Benefit Analysis, Environment, Economic Analysis, Net Present Value, Benefit-Cost Ratio, Economic Internal Rate of Return
Copyright by
Kihwan Kim
2018
ACKNOWLEDGEMENTS

Above all, I would like to express my gratitude to Dr. Baran Han for her acceptance as a major supervisor and her comments for finalizing my thesis. Further, I would like to acknowledge Dr. Kye Woo Lee, who helped me conceptualize this study and encouraged to complete it. I also wish to thank Mr. Jeong-Rock Shim and Mr. Daehwan Kim, the class of 2014 in the KDI School. Mr. Shim gave me personal advices for writing a thesis and Mr. Kim in the KOICA supported me in reviewing the Karian Dam project. Finally, I would like to send my great appreciation to my family in Seoul and Daegu, especially my wife and daughter, to show enormous patience and support.
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>AMDAL</td>
<td>Analisa Mengenai Dampak Lingkungan (Environmental Impact Assessment)</td>
</tr>
<tr>
<td>B/C Ratio</td>
<td>Benefit-Cost Ratio</td>
</tr>
<tr>
<td>CBA</td>
<td>Cost-Benefit Analysis</td>
</tr>
<tr>
<td>CEA</td>
<td>Cost-Effective Analysis</td>
</tr>
<tr>
<td>CIF</td>
<td>Cost Insurance and Freight</td>
</tr>
<tr>
<td>DAC</td>
<td>Development Assistance Committee</td>
</tr>
<tr>
<td>EDCF</td>
<td>Economic Development Cooperation Fund</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIRR</td>
<td>Economic Internal Rate of Return</td>
</tr>
<tr>
<td>F/S</td>
<td>Feasibility Study</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FIRR</td>
<td>Financial Internal Rate of Return</td>
</tr>
<tr>
<td>FOB</td>
<td>Free on Board</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GNI, PPP</td>
<td>Gross National Income, Purchasing Power Parity</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IUCN</td>
<td>World Conservation Union</td>
</tr>
<tr>
<td>JBIC</td>
<td>Japan Bank for International Cooperation</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>K-Water</td>
<td>Korea Water Resources Corporation</td>
</tr>
<tr>
<td>KEXIM</td>
<td>The Export-Import Bank of Korea</td>
</tr>
<tr>
<td>KOICA</td>
<td>Korea International Cooperation Agency</td>
</tr>
<tr>
<td>MDB</td>
<td>Multilateral Development Bank</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>ODA</td>
<td>Official Development Assistance</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>Rp.</td>
<td>Indonesian Rupiah</td>
</tr>
<tr>
<td>SCF</td>
<td>Standard Conversion Factor</td>
</tr>
<tr>
<td>SERF</td>
<td>Shadow Exchange Rate Factor</td>
</tr>
<tr>
<td>SI</td>
<td>Sensitivity Indicator</td>
</tr>
<tr>
<td>SV</td>
<td>Switching Value</td>
</tr>
<tr>
<td>TEPSCO</td>
<td>Tokyo Electric Power Services Company Limited</td>
</tr>
<tr>
<td>USD</td>
<td>US dollar</td>
</tr>
<tr>
<td>VAT</td>
<td>Valuable Added Tax</td>
</tr>
<tr>
<td>WB</td>
<td>The World Bank</td>
</tr>
<tr>
<td>WCD</td>
<td>The World Commission on Dams</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. LITERATURE INTERVIEW ... 6

III. METHODOLOGY .. 11
 A. Procedure of the Cost-Benefit Analysis (CBA) ... 11
 B. Criteria for Project Justification ... 14
 1. Net Present Value and Discount Rate ... 14
 2. Benefit-Cost (B/C) Ratio ... 15
 3. Economic Internal Rate of Return ... 16
 4. Sensitivity Analysis ... 17
 C. Measures for Non-Monetary Costs and Benefits .. 18
 1. Costs by Inundation .. 20
 2. Indirect Benefits ... 24

IV. RESULTS & DISCUSSION .. 26
 A. General ... 26
 B. Scenario 1 - Without a Case of Environmental Valuation ... 27
 1. Economic Costs and Benefits .. 27
 2. Economic Analysis ... 28
 C. Scenario 2 - With a Case of Environmental Valuation .. 30
 1. Economic Costs and Benefits .. 30
 2. Economic Analysis ... 32
 D. Discussion ... 35

V. CONCLUSION .. 36

VI. APPENDICES .. 38

VII. BIBLIOGRAPHY .. 51
LIST OF TABLES

1. The Procedure of a Feasibility Study in the EDCF 8
2. Steps for Cost-Benefit Analysis (CBA) 11
3. Summary of Cost Estimates for the Karian Dam (Scenario 1) 27
4. Summary of Benefit Estimates for the Karian Dam (Scenario 1) 28
5. Summary of the CBA Results for the Karian Dam (Scenario 1) 29
6. Sensitivity Analysis for the Karian Dam (Scenario 1) 30
7. Summary of Cost Estimates for the Karian Dam (Scenario 2) 31
8. Cost Estimates of Agricultural Product Losses 31
9. Cost Estimates of Biodiversity Losses 32
11. Summary of the CBA Results for the Karian Dam (Scenario 2) 33
12. Sensitivity Analysis for the Karian Dam (Scenario 2) 34
LIST OF FIGURES

1. Change of Crop Prices in Indonesia (2006-2016) 20
2. Land Use of Inundation Area by Karian Dam 21
3. Cumulative NPV Plot for Scenario 1 (2015-2061) 29
4. NPV and EIRR Calculation in Scenario 1 29
5. Comparison of NPV and EIRR Calculation in Scenario 1 & 2 33
INTRODUCTION

This study aims to investigate how the valuation of environmental impacts in cost-benefit analysis (CBA) would influence on the decision of investment of a development project. In this paper, I am going to focus on Korean ODA projects for showing in what extent the CBA is affected. Many projects by Korean government have been concentrated on social and economic infrastructure and service. Transportation and logistics recorded high at approximately 240 million US dollars in 2014, the first portion of the bilateral Korean ODA sectors. In water resources and sanitation, about 155 million US dollars were invested. In short, multi-purpose dam construction and road expansion are one of the largest parts of Korean ODA projects.

The civil work projects inevitably gave rise to various socio-environmental problems including involuntary resettlement and environmental pollution in recipient countries. Currently, Korean aid agencies have guidelines for environment impact assessment (EIA) or environmental safeguard, but it is not well known on public that they are complying with the guidelines. Also it is problematic if the Korean donor institutes objectively evaluate the EIA reports examined by recipient countries. Therefore, quantitative assessment of the environmental impacts needs to be taken into account in the ex-ante evaluation before the appraisal procedure.

According to the Development Assistance Committee (DAC) Peer Review of Korea report in 2012 by the Organisation for Economic Co-operation and Development (OECD),

Korean ODA programs had been promoted by insufficient impact evaluations and the evaluations were still pilot or in the early stages. The report also points out the necessity of strengthening evaluation capacity to bring expected project results and to increase the ODA effectiveness for the Paris Declaration commitments. As a project size is bigger and mega projects are more increased, consideration of environmental concerns is more important as one of major factors for success.

Mega projects such as large dam construction need large investments. The large investments can bring large benefits. But the large investments also can give rise to large costs. The World Commission on Dams (WCD) examined the compiled data of economic analyses from the appraisal to the completion of projects done by the World Bank (WB) and Asian Development Bank (ADB), and the average economic rate of internal return (EIRR) at the post-evaluation phase was strikingly lower than it at the appraisal phase (2000, 47-58). In other words, comprehensive effects in nature were not incorporated with the analyses, and regarding the social and environmental impacts as minor factors were accounted for the differences. The WCD pointed out that the multilateral banks conservatively undertook the CBAs that only considered direct costs and benefits.

The reality was not rigorously applying the estimation of the non-conventional costs and benefits into the CBA. In Korea, public investment projects for construction of multipurpose dams only include economic and financial expenses in the cost estimation of the CBA, exclusive of environmental costs (Yeo et al. 2003, 1). Silva and Pagiola (2003, 3) states that it has been a challenging task to include environmental impacts, since they are

2 For 14 irrigation dam projects reviewed, the average EIRR at appraisal was above 15%, while it was 10.5% at evaluation. Twelve projects, having expected returns of over 12% at appraisal, were dropped to 5 by evaluation, and 4 cases fell below the 10%, which could invert to the decision at appraisal. According to the WCD’s study, the WB’s irrigation projects showed that the average EIRR had been dropped from 17.7% at appraisal, 14.8% at completion, and 9.3% at the time of impact evaluation, 6 to 8 years after completion. Projects in different type’s dams were also in same patterns. In case of hydropower dams, the half of 63 samples failed the estimated target of power generation because of soil sedimentation in water reservoirs. In case of water supply dams, the EIRRs of 4 dams fell by over 6%.
not easily quantified in physical properties and valued in money terms. The WCD also revealed that efforts to interpret the environmental and social costs of large dams as economic terms have not been enough to account for the actual profitability of the dams (2000, xxxi). A project in developing countries is probably more difficult to estimate costs and benefits on the indirect impacts due to a lack of data.

In early 2000s, Indonesian government requested the Korean government to promote the Karian Multipurpose Dam project, planned to solve the water shortage problem in the national capital areas including Jakarta, Bogor, Tangerang, and Bekasi (collectively called “Jabotabek”). Korea International Cooperation Agency (KOICA) conducted a feasibility study for the project, and completed a detailed design of the dam in 2006. In fact, a previous study for the same project was already done by Japan International Cooperation Agency (JICA) in 1985. Some Korean papers indicate the reason that the project resumed in about 20 years was because Indonesian government could not procure the budget of 100 million US dollars for concessional loan due to the currency crisis in 1997 (Ryu 2007, 57; Yoon 2008, 91; Lee 2009, 79; Ryu and Ahn 2013, 55-57). But it was not well known why Japan did not continue to promote the project, although they previously experienced the feasibility study for the dam construction and concluded that the project was “worthy to implementation” (JICA 1985).

In order to proceed with the feasibility study, the both sides, Korea and Indonesia as a donor country and a recipient country, seemed to comply with social and environmental assessment guidelines required at the international level. According to Ryu and Ahn (2013), Indonesia realized that a dam project raised social issues such as resettlement problems and environmental deterioration. The recipient government implemented an environmental

impact assessment (AMDAL)⁴ in 2005 and prepared the Karian Land Acquisition Resettlement Plan (LARP) in 2008 for minimizing social and environmental impacts in the project site. In 2011, Indonesian government concluded an EDCF (Economic Development Cooperation Fund) loan agreement with Korean government. The Karian Dam project was started from the end of 2015, scheduled for completion by 2019.

But there were many questions to be granted. I hardly see any improvement in the Karian Dam project from the other large dam cases. Cho et al. (2011, 21) already pointed out that the implemented AMDAL report lacked substantial countermeasures against the predicted risks in environmental areas and the accompanying social effects. For example, destruction of the spawning places in the water reservoir impacts on decline of fish quantity, devastation of the ecosystem and adjacent fisheries. Also reduced water flow in the downstream causes increase of soil salinization, which leads to deteriorate paddy fields and damage crops. Hence, the project was temporarily suspended to reinforce social impact assessments for resolving conflicts (Lee 2014, 58). Nevertheless, the Export-Import Bank of Korea (KEXIM), as an implementation body of the EDCF loan, has tended to overlook social and environmental impacts in the feasibility study. As one of major tools to remove negative effects on environment, an environmental impact assessment (EIA) is stated in the Bank’s EDCF Feasibility Study (F/S) Manual (2010, 23-28). But the assessment result is not critically discussed as a determining factor for a project investment.

In the EDCF F/S Manual (2010, 22), the KEXIM mentions that it is difficult to estimate indirect benefits such as reduction of environmental pollution or noise because of two reasons; first, the effects on public investment projects are not solely composed of goods and services, so intangible benefits are not readily quantified. Also estimation of the

⁴ AMDAL (Analisa Mengenai Dampak Lingkungan in Indonesian): Environmental Impact Assessment for significant impact activities, equivalent to the EDCF ‘Category A’ project identified as environmental threats are likely to be severe and influencing on broad areas (e.g. Large dam project with more than 15 meters height and 3 million cubic meters impoundment capacity)
benefits is different for a project’s type, location, and size. Second, the lack of objective and concrete data in developing countries acts as a hindering factor to estimate the non-conventional benefits. Because environmental impacts are intertwined with public health, leisure, and aesthetical values, they cannot be calculated by the equation of price (P) × quantity (Q).

The Karian Dam project was categorized in the highly environment-impacted “Category A” projects by the manual, so that a question has arisen that how the KEXIM handled the relevant issues in the appraisal procedure. I requested disclosure of information about the EIA report for the dam project to the bank, but the loan lender declined to open the document on account of the recipient government’s objection. In the meantime, the ADB posted a draft of review for acceptability assessment of the Karian dam project. The study indicates that vulnerable groups including women are still susceptible to socio-economic impacts, and scoping in the AMDAL report does not cover post-operational impacts (ADB 2017).

The KEXIM needs to take a more progressive approach considering valuation of environmental impacts. An assessment of environmental impacts is important because it could save potential ex-post costs to make up negative impacts. Counting on the impacts, the ODA project would be effective for the donor and the recipient country. In this research, I suggest that environmental impacts in the Karian Dam project to be quantified and inserted into the cost-benefit analysis (CBA). As a result, I am going to check whether the result makes the original decision in the project appraisal to be reverted or not. For that, I set up a hypothesis that the project would remain economically viable, even though the CBA result is influenced on socio-environmental impacts as indirect costs.
LITERATURE REVIEW

In 1980s, the World Bank’s two projects, Polonoroeste Highway Project in Brazil and Narmada Dam Project in India, were promoted without sufficient discussion on socio-environmental impacts (Clapp and Dauvergne 2008, 202). And it aroused fierce opposition and criticism from local residents and the international society for numerous socially and environmentally-adverse effects. The two cases evidently show that reflection of the non-conventional factor is crucial for promoting an ODA project. As a donor country in ODA since joining in the Colombo Plan in 1954, Japanese government provided a bilateral concessional loan to Indonesia to construct the Koto Panjang Dam in 1980s to solve demands for electricity in the central region of Sumatra. But the dam project was recorded as a failure case that the social impacts were not thoroughly internalized in the early phase of the project.

The construction of the Koto Panjang Dam necessarily caused resettlement of the region’s habitants, and about 20,000 people resided in the inundation area were relocated. As a socio-economic impact, more than 5,000 households inevitably changed their primary income source, 60% them from rubber plantation (JBIC 2004, 41). In the third party ex-post evaluation report by the Japan Bank for International Cooperation (JBIC), the involuntary re-settlers were not only losing their economic bases, but most of them failed to transfer industrialized labors from agriculture. It led to exacerbate the living conditions of them. In September 2002, 3,861 local people affected by the project filed a lawsuit in the Tokyo

District Court as plaintiffs for destroying their inhabitation against Japanese government.\(^6\) Also the dam project was accused for ecosystem destruction and adverse impacts of biodiversity around the site. Deforestation in the catchment area swept away the habitats of wildlife such as Sumatran elephants, designated as an endangered species by the World Conservation Union (ICUN) in 1988. The whole flora and fauna in the area was irreversibly damaged by the dam construction. Later, the JBIC conceded that the plans for environmental management and monitoring of the sites lacked adequate implementation.\(^7\) Without efforts to count on environmental information, the project’s benefits could be zero or lessened by indirect costs in socio-environmental aspects in the future. This case evidently shows two lessons; first, causes that oppose the project (e.g. hardships of resettlement villages) were not equally treated with supportive projection for promotion (e.g. profits from power generation). Second, the conflictive factors need to be properly internalized in the project design.

The poor economic performance for large dam projects is consequentially concluded to incur overrunning costs in the long run. Yeo et al. also introduced a Korean case study of valuation on damages of water quality degradation in the Soyang-gang River Dam project that the estimation with the indirect costs significantly lowers the B/C ratio in comparison with the original case (2003, 155-156). The previous dam studies in Korea mainly considered the expected benefits by 50 years after the construction in the CBA, while the costs for environmental damages were tended to only focus on the present which the damages occurred. However, there are several cases reported that the degrees of environmental damages expected at the time of a dam construction differ from the actual level of the negative impacts after the construction. Hence, it becomes critical to obviously add the

\(^6\) The resettled residents accused Japanese government including Japan Bank for International Cooperation (JBIC), Japan International Cooperation Agency (JICA), and Tokyo Electric Power Services Co., Ltd. (TEPSCO) to restore rivers destroyed by the project and demand 5 million yen (about 42,000 USD) per a plaintiff for compensation cost.

\(^7\) JBIC, 9-35.
indirect costs as well as the derived benefits by a project’s decommissioning time (Ibid., 1).

Emerging from the 1950s and the 1970s, CBA becomes the dominant economic tool that supports decision-making on investment projects, as the WB used the economic analysis method in a project appraisal procedure since 1970s (WCD 2000, 180-181; Chutubtim 2001, 3). Now the CBA is generally used for checking the validity of a project that will be economically viable. While performed at the stage of feasibility study (F/S), which reviews feasibility on technical, environmental, economic, and financial perspective, it is a very comprehensive analysis for policy or project evaluation that integrates the other techniques such as environmental impact analysis (EIA), economic impact analysis, regulatory impact analysis, cost-effective analysis (CEA), risk assessment, etc. (Kim et al., 2003, 21). Steps for the F/S are like on the below (Table 1).

Table 1. The Procedure of a Feasibility Study in the EDCF

| Step 1 | Basic Survey & Review on Background Information | - Survey on recent meteorology, economy, humanity and society, etc. in recipient sites
- Study on current status and demand prospect
- Review on local laws & relevant plans |
| --- | --- | --- |
| Step 2 | Review on Technical Validity | - Comparison review w/ a previous detailed design
- Adequacy review of facility planning |
| Step 3 | Socio-environmental Analysis | - Social/Environmental Impact Analysis
- Study for resettlement plan, managing organizations and systems |
| Step 4 | Economic/Financial Feasibility Review | - Economic and financial analysis (B/C ratio, NPV, EIRR, FIRR, etc.) by scenarios
- Sensitivity analysis by parameter changes |
| Step 5 | Supplementary Task | - Final review including risk assessment before project appraisal
- Financing methods |
| Step 6 | Report Writing & Submission | - Final reporting for project decision |

Source: Lee (2009) “Feasibility Study of Follow-up Project on Karian Dam in Indonesia.” pg.80
Now the valuation of external impacts is increased in economic analysis and it would be unavoidable in order that the CBA remains as an efficient tool in practice to appropriately envisage a project’s future. Of course, as Vaughn and Ardila (1993, 7-8) say, a robust outcome in the CBA is decided by precise estimation, neither overestimating conventional benefits, nor underestimating ‘unquantifiable’ costs, or vice versa. With sensitivity analysis to help the CBA’s decision figure out on changing a parameter’s conditions, ‘unquantifiable’ is no longer acceptable and ‘lack of data’ is not insoluble in many cases by progress in methodology on observing the relevant behaviors. And more we know about the sources, more we get confidence on the results (Dixon, Talbot and Le Moigne 1989; Dixon 2008, 4).

In general, physical impacts are readily identified and quantified as monetary terms, and they are represented as economic prices. In a totally competitive market where only demand and supply simply exists without externalities such as government intervention (e.g. taxation, subsidization), market prices can exactly reflect on economic prices. But in an imperfect competition state, the market prices are inevitably distorted and it influences on deducting inaccurate costs and benefits (Chutubtim 2001, 17-18). For that, a ‘shadow price’ is introduced for increasing accuracy in economic estimation. But again, the calculation of shadow prices is complicated, so that it is hard to use in developing countries due to the lack of information on the prices.

Repeatedly including social and environmental impacts in the CBA is required since cost and benefit categories in ODA projects are closely related to the social welfare in the national economy. If the CBA is done for a corporate’s investment project, the valuation of externality might be regarded as a minor category. But the impacts such as improvement or deterioration of environmental quality affect the national economy, so the impacts occurring social costs and benefits are necessarily included in the analysis as a major category.

So far, expanding efforts of the CBA’s scope have been made to address social and
environmental issues, and they are leading to the valuation of social and environmental impacts. The WB increased environmental valuation from one in 162 projects in 1990s to average of 6 to 9 projects per year in 2000s (Silva and Pagiola 2003, 47). Especially, dam projects need to be incorporated with social and environmental aspects into the CBA because the impacts could lessen the net social benefit and invert the large investment. For instance, Kwak and Yoo (1999) introduced an alternative case in the Dong-gang River Dam project that a net social benefit turned to a negative value by adding environmental damage costs from biodiversity losses and deprivation of recreational activities. Thus, economic viability of the project fell so much that it was not supposed to make investment decisions.

According to the F/S report for the Karian Dam in 2006 (KOICA et al. 2006, 11), the purpose of the dam construction is to supply water for household, urban and industrial needs in the recipient areas. The project also has a benefit of controlling floods in the downstream area where a toll-road to Jakarta and an industrial complex are located. Now the project, valued at 74 million US dollars (equivalent to 1.07 trillion Indonesian Rupiah), was completed at 39% as of 2017 and is expected to be finished in May 2019. As the results of the economic analyses were shown in the report, the dam project was concluded as ‘economically feasible’ by assessment of the estimated values, NPV, B/C ratio, and the EIRR. And here I am going to show that why the alternative case of environmental valuation needs to count on the analysis and how it can be included in the CBA in comparison with the original case.
METHODOLOGY

A. Procedure of the Cost-Benefit Analysis (CBA)

Basically the CBA procedure is followed with 9 steps (Boardman et al. 1996, 7). Here, in the sequential steps (Table 2), valuation of the indirect impacts will be also considered.

Table 2. Steps for Cost-Benefit Analysis (CBA)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify stakeholders to the analysis.</td>
</tr>
<tr>
<td>2</td>
<td>Identify alternative policies to be included.</td>
</tr>
<tr>
<td>3</td>
<td>Identify potential physical impacts.</td>
</tr>
<tr>
<td>4</td>
<td>Predict the impacts over the lifespan of the project.</td>
</tr>
<tr>
<td>5</td>
<td>Monetize all the impacts.</td>
</tr>
<tr>
<td>6</td>
<td>Find the present value with the discount rate.</td>
</tr>
<tr>
<td>7</td>
<td>Add up the costs and benefits.</td>
</tr>
<tr>
<td>8</td>
<td>Perform a sensitivity analysis of the results.</td>
</tr>
<tr>
<td>9</td>
<td>Select the preferred alternative.</td>
</tr>
</tbody>
</table>

(Step 1) Identify stakeholders to the analysis.

First it is necessary to decide whose costs and benefits ‘stand’ for the project. The Karian Dam project, for example, needs to count on groups of people who live in the dam inundation area and the neighboring areas. The population in the downstream can expect a dam construction for flood control. Households and factories near the dam can gain a benefit from a ‘stable’ water supply. But the recipient nation would face a problem of losing tropical forests in the area as derived costs including biodiversity losses and carbon storage losses.
(Step 2) Identify alternative policies to be included.

A potential alternative project is evaluated relative to the status quo. The net costs and benefits of the project are compared with those of a hypothetical project. In this paper, this step applies the two cases - ‘without’ (original) and ‘with environmental valuation’ (alternative) to the CBA.

(Step 3) Identify potential physical impacts.

Once all the cases are set, all the expected impacts in positive and negative sides are identified and quantified. Because of the limit of information and practical consideration, my study is confined to some of the categories on the below.

<table>
<thead>
<tr>
<th>Direct Costs</th>
<th>Direct Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construction Cost (including compensation cost for resettlement)</td>
<td>• Water Supply Tariff (Municipal, Industrial)</td>
</tr>
<tr>
<td>• Operation Cost (O&M, replacement, pumping cost)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirect Costs</th>
<th>Indirect Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Resettlement compensation (agricultural products loss)</td>
<td>• Flood Control</td>
</tr>
<tr>
<td>• Biodiversity Loss</td>
<td></td>
</tr>
<tr>
<td>• Carbon Storage Loss</td>
<td></td>
</tr>
</tbody>
</table>

(Step 4) Predict the impacts over the lifespan of the project.

It is difficult to predict impacts during the lifespan of the project and after, if the project still incurs costs or brings benefits. The Karian Dam will also have impacts over extended periods of time. Especially, impacts relative to indirect costs and benefits will residually exist after the project and will not be readily quantified. Here I am going to narrow the time horizon to the longevity of the dam, 50 years only.

(Step 5) Monetize all the impacts.
All the expected costs and benefits are monetized, so that the costs and benefits can be compared. Direct costs for construction, operation and maintenance (O&M) and a water supply benefit are valued for market price. Resettlement costs and flood control benefits are assessed as replacement value estimation, which is to calculate prices of goods and services replacing the effects of the dam project. For environmental costs, secondary data in existing studies are used as ‘benefit transfer’ in case of a similar environment of a specific site. If the values of cost or benefits are hardly monetized, an alternative method such as cost-effective analysis8 can be used.

(Step 6) Find the present value with the discount rate.

Before adding up, future costs and benefits are discounted to get present values by a discount rate, because the monetary values at different time periods need to be adjusted for comparison on the same time base.

(Step 7) Add up the costs and benefits.

The net present value (NPV) equals the present value of benefits (PV(B)) minus the present value of costs (PV(C)):
\[
NPV = PV(B) - PV(C)
\]

When the NPV is greater than zero, the project is said to be viable. This study will check if the NPV of the original case without the valuation is higher than that of the alternative case with environmental valuation. Benefit-Cost (B/C) Ratio and Economic Internal Rate of Return (EIRR) are subsidiarily used for helping an investment decision. Also I am going to

8 It is a technique to comparatively analyze costs and outputs of each alternative to find the most effective one. In the technique, costs are transferred to monetary values but not for benefits. It is used in cases of evaluating projects that outputs are not easily monetized. For example, planning a policy to prevent air pollution, the reduction result is not quantified as monetary terms. For that, a case of the lowest cost to reduce a same contaminant level is selected as the most effective one.
compare the results of the EIRR and B/C Ratio of the original case with those of the alternative case.

Step 8 Perform a sensitivity analysis of the results.

A sensitivity analysis is to find an uncertainty of a project. It clarifies for decision makers how they affect the CBA results. I can know that the Karian Dam project is sensitive to which variables in costs and benefits. And the time and resource constraints will lead to focus on the most important variables.

Step 9 Select the preferred alternative.

In the final step, a recommendation is made with an alternative that gives the highest positive net benefit value. As stated, the conventional CBA has a shortage not to represent intangible costs and benefits. Now various valuation techniques help account for them in monetary terms. But the CBA is still not perfect since it can be biased by a tendency to overestimate benefits and underestimate costs (Chutubtim 2001, 6).

B. Criteria for Project Justification

1. **Net Present Value and Discount Rate**

 Costs and benefits differ with time. It means that a today’s occurring cost is not same with the cost in 5 or 10 years. Therefore, the future values are adjusted to present values to be compared each other. And the adjustment is done by a ‘discount rate’, which is based on the fact that the value of a future’s consumption is less than that of a present’s consumption by time preference and the opportunity cost of capital over time.

 Let B_t and C_t be the benefits and costs that occur in the year t after start of the project, respectively. If the project ends in n years, the sum of the net present value (NPV) of the
project is as follows.

\[\text{NPV} = \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + i)^t} \]

Where
- \(B_t \) = Benefit at time \(t \)
- \(C_t \) = Cost at time \(t \)
- \(i \) = Discount rate
- \(n \) = Number of years

If the NPV of a project is greater than zero, it is worthy to go on. To the contrary, the project should not be implemented if the NPV < 0. In addition, if there are several different cases, the case with the largest NPV should be given to the priority. Therefore, the NPV helps decide whether a project should be implemented or not, but also which one is the most efficient in multiple cases.

2. Benefit-Cost (B/C) Ratio

When evaluating a project using the B/C Ratio criteria, the sum of the present value of the benefits is divided by the sum of the present value of the costs. And if the ratio is greater than 1, the project is implemented. Conversely, if the number is less than 1, the project will not be feasible.

\[\frac{B}{C} = \frac{\sum_{t=0}^{n} \frac{B_t}{(1 + i)^t}}{\sum_{t=0}^{n} \frac{C_t}{(1 + i)^t}} \]

Where
- \(B_t \) = Benefit at time \(t \)
- \(C_t \) = Cost at time \(t \)
- \(i \) = Discount rate
- \(n \) = Number of years

The B/C Ratio cannot be used to decide the priorities among different alternatives.
because the scales of the welfare effects on projects are different.

3. Economic Internal Rate of Return (EIRR)

The third method for decision of a project in the appraisal procedure is to use the internal rate of return (IRR). The EIRR is the discount rate at which the NPV is zero. The economic internal rate of return (EIRR) tells a society if a project increases the overall economic welfares by appraisal of the net benefits (benefits - costs), while the financial internal rate of return (FIRR) is intended to know if a project is profitable (revenue - expenditure). In this research, the EIRR is only used for the economic analysis.

\[
0 = \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + r)^t}
\]

Where \(B_t \) = Benefit at time t

\(C_t \) = Cost at time t

\(r \) = Economic internal rate of return

\(n \) = Number of years

The only internal rate of return at the NPV equal to zero is the point that the net social benefit, \(B_t - C_t \), once turns a negative to a positive value.

\[
r \geq i \rightarrow \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + r)^t} \geq 0
\]

\[
r < i \rightarrow \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + r)^t} < 0
\]

Where \(B_t \) = Benefit at time t

\(C_t \) = Cost at time t

\(r \) = Economic internal rate of return

\(i \) = Discount rate

\(n \) = Number of years
If the EIRR \((r)\) is greater than the social discount rate \((i)\), the project can be implemented and cannot be promoted in the opposite. The EIRR, like the B/C Ratio, has a limitation to determine project priorities.

4. Sensitivity Analysis

With the three criteria for the CBA, an additional task is done for helping an investment decision, a sensitivity analysis. The sensitivity analysis is mainly used for reducing the uncertainties of the project outputs. It changes the values by applying various assumptions to uncertain variables, which have a crucial effect on benefits and costs, and then examine changes in cost and benefit estimates under each assumption. The analysis has limitations because it does not reflect the probability of each possible outcome, but it has the advantage that it can be used even when the probability of each result is not known accurately. ‘A sensitivity indicator (SI)’ measures the sensitivity of a project:

\[
SI = \frac{dNPV/NPV}{dV/V} = \frac{(NPV_b - NPV_s)/NPV_b}{(V_b - V_s)/V_b}
\]

Where

- \(SI\) = Sensitivity indicator
- \(dV\) = Net change in a key variable
- \(NPV_b\) = Value of NPV in the base case
- \(NPV_s\) = Value of NPV in the sensitivity test
- \(V_b\) = Value of a key variable in the base case
- \(V_s\) = Value of a key variable in the sensitivity test

If the SI value is greater than 1, the project is ‘sensitive’ to the variable. By contrast, it is ‘insensitive’ to the variable when the SI value is less than 1. If the SI is equal to 1, the project is ‘neutral’ to the variable. That is, higher SI value means that the NPV is subject to changes on variables, and the risk of the project is higher on the variable. Also another approach is ‘switching value (SV)’. As an inverse of the SI, it is the percentage change in a
variable needed for the NPV to be zero.

\[SV = \frac{1}{SI} \times 100 \]

\[= \frac{dV}{dNPV} \times \frac{V}{NPV} \times 100 \]

For interpretation of the SV, if the value is smaller than 100%, the project is sensitive to the variable. If it is larger than 100%, the project is insensitive to the variable.

C. Measures for Non-Monetary Costs and Benefits

Besides the direct costs and benefits that are explicitly priced in the market, the values of social and environmental impacts are difficult to measure in monetary terms. In order to compensate for these shortcomings, it has been used efforts to monetize the implicit values that can be applied by such a market valuation method. Even though they are non-market values, various methods were sought to quantify them through insertion into a surrogate market, replacement to the similar monetary units, or survey for ‘willingness to pay or accept’.

Environmental Assessment Sourcebook of the World Bank indicates that “in spite of these difficulties, a greater effort needs to be made now to ‘internalize’ environmental costs and benefits by measuring them in money terms and integrating these values in economic appraisal” (1991, 138). In the case of overseas countries, studies on environment-related cost and benefit analysis have already been conducted since the 1970s (Dixon, Talbot and Le Moigne 1989, iii). Up to date, several inference methods such as hedonic pricing approach:\(^9\)

\(^9\) (Hedonic Pricing Approach) Estimation of an implicit price for non-tradable environmental values by regarding it as tradable market attributes. For example, a house placed near a river is supposedly higher-priced than the other house far from the river under the same conditions. The values brought by the river are measured by a difference of the property value. But this approach has the multicollinearity issue that two variables are interconnected.
travel cost approach10, and contingent valuation method11 have been introduced to estimate the non-marketed goods (Kwak, Jeon and Kim 2012, 59-61) and interpolated not to commit a foreseeable fallacy heavily depending on the results of the CBA \textit{per se}.

The Karian Dam project has various costs and benefits directly and indirectly. The KOICA’s F/S report (2006) counted on the raw water supply for household and industry only as the project benefit, while the feasibility study excluded flood control benefits and supply of irrigation water as indirect benefits (Ibid., 101). In fact, numerous articles and documents in Korea and Indonesia promoted that the dam would bring various benefits that were not estimated in the CBA; irrigation water supply and the derived economy growth by increased yields of agricultural products, generation of electrical power, prevented damage from floods, and even recreational benefits around the dam.

However, I could not find any quantified analysis results about the introduced indirect benefits and my attempt to quantify all the impacts reached a limit by the absence of background information. Social and environmental costs could be approximated by using estimates based on existing data, although they are not accurate. Of course, there may be differences between regions and time periods for each category of costs, but the approximate estimates could be used as a reference for the cost estimation. Here I am going to indicate possible costs and benefits for the dam project and introduce the added categories in this study.

10 (Travel Cost Approach) Estimation of a sum of expenditure on travel by substituting values of environmental resource (e.g. a benefit to visit a recreational site) The benefit to enjoy leisure at a recreational site can replace a total travel cost of a round-trip transportation costs (i.e. fuel cost, parking fees, toll fares), entrance fees, and opportunity cost for the travel time. But it has a defect to become unaware of information on a non-travel group as an omitted variable.

11 (Contingent Valuation Method) Estimation of a customer’s preference transferred to a market value in a hypothetical market. Through a survey, an environmental feature is responded to the ‘willingness to pay’ or ‘willingness to accept’. But the method has a limit as the customer’s behavior is based on the surrogate market, not a real market.
1. Costs by Inundation

a) Agricultural Product Losses

The present income for agricultural crop production in farmlands submerged due to the Karian Dam construction would be inferred to the future losses of income in the affected area. To calculate the losses, the areas of crop fields multiply with average crop price per unit area and year. In the KOICA (2006)’s F/S report, these losses were counted once as a compensation cost for the resettlement, but the economic productivity losses could not be offset by a one-time expenditure in the resettlement cost category. So I am going to count on the losses as an indirect cost for the lifespan of the project. Here I assume that a unit price of a crop (e.g. rubber, bamboo, palm oil, etc.) is fixed at the data in the F/S report, although the price would be fluctuated. According to the FAOSTAT’s¹² data from 2006 to 2016, the prices of relevant crops in Indonesia have been changed (Refer to Figure 1).

![Fig. 1. Change of Crop Prices in Indonesia (2006-2016)](http://www.fao.org/faostat/en/#data/PP)

With the FAO’s data, I tried to substitute the prices of crops introduced in the F/S report, but there were some limitations; first, the price of bamboo cultivated in the inundation area was not listed in the FAO. Second, the FAO indicated not a basic price, but a producer price, which is a sum of the price given for the producer, i.e. a border price equivalent to a CIF or FOB price\(^\text{13}\), plus taxes on commodities except valuable added tax (VAT) and subsidies on them. For the reason, it was not possible to transfer to a border price. Hence, I am going to convert the current prices of crops from the KOICA report to constant prices, and then calculate the damage costs for 50 years, the lifespan of the project, by using the discount rate. Compared with the composition of crops at the time of the F/S study, it is unclear what crops are being cultivated in the downstream of the Karian Dam and in what composition they are cultivated.

![Fig. 2. Land Use of Inundation Area by Karian Dam\(^\text{14}\)](image)

Therefore, I am going to check how the changes of the indirect costs affect the project in the sensitivity analysis.

\(^{13}\) CIF price means a cost that a seller pays with freight including insurance to the port of destination. It can be used for an adjusted supply price or opportunity cost in the imported country. On the other hand, F.O.B (Free on Board or Freight on Board) price is a cost that delivers the goods to the nearest port (border) as the export price or demand price.

b) Carbon Storage Losses

Indonesia has a tropical monsoon climate annually and tropical forests are developed in the inundation area of the Karian dam sites. By inundation of tropical forests in the area, the impacts of climate change are expected in the long term. According to Sharma et al. (1992), tropical forests and forest soil have a function of capturing carbon owing to the highly dense biomass. The study says an estimation that the tropical forests can contain up to three times of carbon in the atmosphere. The carbon storage losses contribute to stimulation of global warming, and the increased emission of greenhouse gases including carbon dioxide is regarded as one of the main culprits.

Because the basic surveys of the Karian Dam done by the JICA (1985) and the KOICA et al. (2006) did not mention any timber logging activities in the area, I would disregard losses of income by the tropical land use such as forestry and manufacturing industry of non-timber forest products. But clearing the tropical forests would cause the absence of biomasses to sequester carbon in the atmosphere. I would count them on as the climate change losses and use a ‘benefit transfer’ method to obtain an economic value from a past study done in a similar site.

Here I assume that the ‘replacement cost’ would not exceed the sum of the individual’s ‘willingness to pay’. The willingness to pay or accept tends to be estimated in inflated in comparison with the individual’s income (Kim et al. 2003, 39). I would borrow a number of the estimated values from the sources of Pearce and Warford (1993). The paper had two assumptions; first, one hectare of deforestation contributes to release 100 tons of atmospheric carbon in a year. Second, the damage is estimated to 13 US dollars per ton of carbon. In other words, the opportunity cost would be 1,300 US dollars per hectare a year.

15 Benefit transfer is an estimation of indirect costs or benefits of interests by replacing the values developed in a similar site to the valuation study. It will be proper when funds or time are absent to undertake the valuation (OECD 1995).
c) Biodiversity Losses

Dam construction refers to the transition from a river ecosystem to a lake ecosystem that divides upstream and downstream. Therefore, by the manipulation of the human activity, the diversity and population of the fish in the ecosystem will be inevitably affected due to changes on the surrounding environment. Also the flora and fauna in the area would lose their habitation by inundation, and the cut-off of the river ultimately would destroy the natural preservation. Costs for the damage can be broadly categorized by two items; one, the losses of intrinsic values for biodiversity per se; two, the losses of derived benefits from recreational activities (e.g. eco-tourism, camping, etc.) and market activities (e.g. fishery, reprocessing industry using rubber, palm oil, coconut, etc.).

In this study, I focus on the losses of biodiversity value itself. The F/S report for the Karian Dam decided to neglect the impacts on fishery because the economic activity in the Ciberang River around the dam site was carried out in a very small scale (KOICA et al. 2006, 106). Related to the tourism, the previous study mentioned that some historic remains and temples were located near the Banten port and a vast tourist attraction were placed in the Banten Bay. Because they are distant from the dam site and would not be affected by the construction project, the values are not estimated for the economic analysis. And the market activities will be also excluded from the valuation.

Like the carbon storage losses, biodiversity damage costs would be estimated with a value by the ‘benefit transfer’ from a previous study. Ruitenbeek (1990) indicated that a potential benefit captured by “ecologically important and diverse ecosystem” in a tropical forest would be approximately 3,000 US dollars/km² per year from an analysis of transfers for 1987-1990 periods. And I am going to apply the price value into the CBA as an indirect cost.
2. Indirect Benefits

a) Flood Control Benefit

From the past studies, the benefits of the flood control are based on direct benefits from lessening flood damages such as reduction of physical damages lost by flooding, increases of crop yields, and efficient utilization of assets (e.g. rise of land price). In addition, indirect benefits can be valued such as sales growth due to continuation of production, reduction of other incidental expenses, reduction of loss of life, and improvement of social welfare. However, all the flood control benefits by dam construction projects are rarely quantified, and most have accounted for direct benefits of the damage mitigation (Kim et al. 1995; Yeo et al. 2003). If necessary, other benefits clearly quantifiable are additionally included.

Generally, the annual flood control benefit is calculated as the amount of damage costs after the dam construction deducted from the costs before the investment. And the annual damage cost is assessed by the sum of costs that the average damage values at the flood level multiplied by the probability (or frequency) of flood occurrence in a year. But, in the past, the conceptual process was very hard to be real for the lack of statistical data and analyzing technology to integrate them. Now the unknown field is unveiled by the help of development of information and communication technology (ICT). The flood analysis has become feasible with the application of two-dimensional hydraulic models and distributed rainfall runoff models. And development of the geographical information system (GIS) made the estimation more accurate (Korea Development Institute 2008).

Rivers in Indonesia are prone to floods because of the steep slopes in the upstream, which is subject to frequent encroachment on the floodplains (ADB 1996). Despite the flood control benefits, dam construction becomes an unwelcome policy to local residents around
the site because of the safety. The recent accident, collapse of a saddle dam under construction in Laos financed by South Korea, issued the negative side of the civil construction for whatever reasons, either flooding or collapse. By that, it might be additionally necessary to subtract the corresponding cost of ‘willingness to accept’ the concerns from the benefits. The benefit could be reduced by the discounted interests of future generation against the mega project. To the contrary, a high discount rate could lessen environmental costs such as biodiversity losses and it acts on reducing a negative impact (Turner et al. 1994; Bann 1998, 36). Therefore, it is necessary to adjust the discount rate for the over-appropriated benefits and to lower the discount rate for environmental effects.

In this study, I would only refer to the flood control benefit as it was excluded in the F/S report for the Karian Dam (KOICA et al. 2006). The report did not include benefits from flood control and supply of irrigation water as indirect benefits. Meanwhile, the previous report done by the JICA in 1985 estimated that the Karian Dam would have a flood control benefit, Rp. 2.57×10⁶ (constant price), by prevention of the whole damage costs on houses, household articles, stock assets of markets and business buildings, agricultural crops, and public facilities. But the calculated value would not be used for the extended estimation because there are, after the last measurement, no concrete data about flood damage in the region, the frequency of floods, floodwater level, etc.

Valuation methods applied in this study are summarized as below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Impacts</th>
<th>Valuation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Construction cost</td>
<td>Capital Goods, Materials, Labor</td>
<td>Market price, Revealed preferences</td>
</tr>
<tr>
<td>(b) Land acquisition</td>
<td>Land, Compensation for Inundation</td>
<td></td>
</tr>
<tr>
<td>(c) Operating cost</td>
<td>O&M, Replacement, Pumping</td>
<td></td>
</tr>
<tr>
<td>(d) Externality</td>
<td>Agricultural Product Loss</td>
<td>Revealed preferences</td>
</tr>
<tr>
<td></td>
<td>Biodiversity Loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Storage Loss</td>
<td></td>
</tr>
<tr>
<td>2. Benefit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Raw water supply</td>
<td>Water Supply Tariff (m³)</td>
<td>Revealed preferences</td>
</tr>
</tbody>
</table>
A. General

As stated before, my research is to check if the Karian Dam project is still economically viable when environmental impacts are valuated and inserted into the CBA. So I will do an economic analysis with a dataset of an alternative case ‘with’ environmental valuation and an original case ‘without’ that. This analysis will be conducted under the following assumptions based on the F/S report for the EDCF (KOICA et al. 2006).

(1) The longevity of the dam facility would be 50 years from 2012.

(2) The duration of the project would be total 7 years, 3 years for the preparation period including resettlement and fund security, and 4 years for the construction.

(3) The exchange rate would be applied to the average rate of the Bank of Indonesia, 1 USD = Rp. 9,300 (as of June 2006).

(4) The GNI per capita and GNI per capita, ppp (purchasing power parity) would be applied to the values from the World Bank16, 1,390 USD and 6,300 USD, respectively.

(5) From the (4) data, shadow exchange rate factor (SERF)17 can be acquired as below. The SERF can be also explained as an inverse value of a standard conversion factor (SCF).

\[
\text{Shadow Exchange Rate Factor (SERF)} = \frac{1}{\text{Standard Conversion Factor (SCF)}}
\]

\[
= \frac{\text{GNI per capita, ppp}}{\text{GNI per capita}} = \frac{6,300 \text{ (USD)}}{1,390 \text{ (USD)}} = 4.53
\]

17 SERF is a ratio of economic price of foreign currency to its market price. It is used for border prices (e.g. prices for traded input or output) to convert to the domestic prices.
(6) Social discount rate in the study is applied to 12% in terms of the economic analysis criteria of the KEXIM for the EDCF loan.

B. Scenario 1 – Without a Case of Environmental Valuation

1. Economic Costs and Benefits

The F/S report for the Karian Dam (2006) showed the categories of the following direct costs and benefits; (i) construction cost of the dam and appurtenant, (ii) administration expenses, (iii) physical contingency fees, (iv) operation and maintenance (O&M) cost, (v) compensation cost for resettlement, and (vi) raw water supply benefit for municipal and industrial water. The total project costs are estimated at Rp. 1,267,121 million as summarized in a table below. All the costs are converted to border prices by using a conversion factor.

Table 3. Summary of Cost Estimates for the Karian Dam (Scenario 1)

<table>
<thead>
<tr>
<th></th>
<th>Description of Works</th>
<th>Total Amount (Rp.)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Karian Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Construction of Dam & Appurtenant</td>
<td>187,085,433,313</td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>Engineering Service</td>
<td>24,321,106,331</td>
<td>13% of 1.1.</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Administration Expenses</td>
<td>9,354,271,666</td>
<td>5% of 1.1.</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Physical Contingency</td>
<td>18,708,543,331</td>
<td>10% of 1.1.</td>
</tr>
<tr>
<td></td>
<td>Subtotal 1.</td>
<td>239,469,354,641</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Water Conveyance System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Construction of Waterway</td>
<td>351,249,011,949</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Engineering Service</td>
<td>45,662,371,553</td>
<td>13% of 2.1.</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Administration Expenses</td>
<td>17,562,450,597</td>
<td>5% of 2.1.</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Physical Contingency</td>
<td>35,124,901,195</td>
<td>10% of 2.1.</td>
</tr>
<tr>
<td></td>
<td>Subtotal 2.</td>
<td>449,598,735,294</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compensation for Resettlement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Resettlement Assistance</td>
<td>58,166,204,762</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal 3.</td>
<td>58,166,204,762</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Operation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>O&M for 1&2 (for 50 yrs.)</td>
<td>269,167,222,631</td>
<td>1% of 1.1., 2.1.</td>
</tr>
<tr>
<td>4.2</td>
<td>Replacement Cost</td>
<td>45,010,000,000</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Pumping Cost</td>
<td>205,709,000,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal 4.</td>
<td>519,886,222,631</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,267,120,517,328</td>
<td></td>
</tr>
</tbody>
</table>
In the meantime, the total project benefits by raw water supply are estimated at Rp. 23,579,266 million for 50 years. For the estimation, three assumptions are made as follows;

1. The sales water price is 5,744 Rp./ton and the raw water price is 2,156 Rp./ton as of 2005.

2. The planned water supply is planned as on the below. The total water-flow is same with 14.6 m3/s.

- (2012-2015) 9.1 m3/s in Tangerang, 5.5 m3/s in Serang, Cilegon, and Banten areas
- (After 2016) 12.4 m3/s in Tangerang, 2.2 m3/s in Serang, Cilegon, and Banten areas

3. The water tariff increases 0.8% annually.

Table 4. Summary of Benefit Estimates for the Karian Dam (Scenario 1)

<table>
<thead>
<tr>
<th>Sales Water Price (Rp./ton)</th>
<th>Raw Water Price (Rp./ton)</th>
<th>Net Benefits (A-B)</th>
<th>Production of Water Supply (million ton/yr.)</th>
<th>Total Benefits of Water Supply (million Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81,985</td>
<td>30,773</td>
<td>51,212</td>
<td>23,021</td>
<td>23,579,266</td>
</tr>
</tbody>
</table>

* All the values in the table are calculated as a sum of annual value for 50 years.

2. Economic Analysis

From the costs and benefits, the NPV of Scenario 1 is Rp. 1,231,840 million18, which is considered to be economically feasible because the NPV is greater than zero (Refer to Figure 3 on the next page). With the NPV calculation, results of the CBA of the ‘Scenario 1’ are summarized (Table 5). The B/C Ratio is calculated at 18.61, which is more than 1 and it analyzed as having economic feasibility. The EIRR, a discount rate that the NPV is converged to zero, is analyzed as 31.13%, which is larger than the applied discount rate of 12%. As a result, the original project is proven to have an economic feasibility.

18 In my calculation, construction costs are also discounted since the 2nd year of the cost-occurring periods. The other way of the discount is to apply it to costs and benefits after the construction. In other words, sum of the construction costs are not discounted and counted as one-time expenses regardless of the actual project period. As a result, the difference makes the values of NPV and EIRR changed. As the whole costs prior to operation are put at the ‘zero’ period in the cash-flow chart, the NPV is Rp. 2,595,055 at the discount rate, 12% and the EIRR is 51.13%. They also mean that the project is still an acceptable option for investment.
Table 5. Summary of the CBA Results for the Karian Dam (Scenario 1)

<table>
<thead>
<tr>
<th></th>
<th>Rp. 1,231,840 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV at the discount rate, 12%</td>
<td></td>
</tr>
<tr>
<td>EIRR</td>
<td>31.13%</td>
</tr>
<tr>
<td>B/C Ratio</td>
<td>18.61</td>
</tr>
</tbody>
</table>

Fig. 3. Cumulative NPV Plot for Scenario 1 (2005-2061)

Fig. 4. NPV and EIRR Calculation in Scenario 1

In order to evaluate the soundness of the project to changes in future economic conditions, the sensitivity analysis is also conducted in the following conditions; (i) increases
of operation costs by +10 ~ +20%, (ii) decreases of sales benefits by -10 ~ -20%, and (iii) combination of operation cost +20% and sales benefits -20%. Here are the results of the sensitivity analysis (Table 6).

<table>
<thead>
<tr>
<th>Variations of Factor</th>
<th>EIRR (%)</th>
<th>NPV (million Rp.)</th>
<th>SI</th>
<th>SV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>31.13</td>
<td>1,231,840</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation Costs Increase by 10%</td>
<td>31.08</td>
<td>1,227,735</td>
<td>0.03</td>
<td>3,001</td>
</tr>
<tr>
<td>Operation Costs Increase by 20%</td>
<td>31.03</td>
<td>1,223,629</td>
<td>0.03</td>
<td>3,001</td>
</tr>
<tr>
<td>Sales Benefits Decrease by 10%</td>
<td>28.97</td>
<td>1,058,404</td>
<td>1.41</td>
<td>71</td>
</tr>
<tr>
<td>Sales Benefits Decrease by 20%</td>
<td>26.69</td>
<td>884,968</td>
<td>1.41</td>
<td>71</td>
</tr>
<tr>
<td>Operation Costs Increase by 20% and Sales Benefits Decrease by 20%</td>
<td>26.57</td>
<td>876,757</td>
<td>0.72</td>
<td>139</td>
</tr>
</tbody>
</table>

The results indicate that the projects are sensitive to change in the sales benefits because the SI values is more than 1 and the SV values are less than 100% (See italic values in the Table. 6). However, the variations do not change the projection decision because the EIRRs are still above the discount rate, which means economically viable.

C. Scenario 2 – With a Case of Environmental Valuation

1. Economic Costs and Benefits

In the scenario 2, quantified values of environmental impacts are inserted into the previously analyzed CBA results. As I stated in the methodology, I added limited categories of the following indirect costs; (i) agricultural product losses, (ii) biodiversity losses, (iii) carbon storage (sequestration) losses. The total project costs are estimated at Rp. 6,458,292 million as summarized in a table below.
Table 7. Summary of Cost Estimates for the Karian Dam (Scenario 2)

<table>
<thead>
<tr>
<th>Description of Works</th>
<th>Total Amount (Rp.)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Karian Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal 1.</td>
<td>239,469,354,641</td>
<td></td>
</tr>
<tr>
<td>2 Water Conveyance System</td>
<td>449,598,735,294</td>
<td></td>
</tr>
<tr>
<td>Subtotal 2.</td>
<td>58,166,204,762</td>
<td></td>
</tr>
<tr>
<td>3 Compensation for Resettlement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal 3.</td>
<td>519,886,222,631</td>
<td></td>
</tr>
<tr>
<td>4 Operation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Indirect Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Agricultural Product Losses</td>
<td>520,583,000,000</td>
<td></td>
</tr>
<tr>
<td>5.2 Biodiversity Losses</td>
<td>3,258,550,000,000</td>
<td></td>
</tr>
<tr>
<td>5.3 Carbon Storage Losses</td>
<td>1,412,038,000,000</td>
<td></td>
</tr>
<tr>
<td>Subtotal 5.</td>
<td>5,191,171,000,000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6,458,291,517,328</td>
<td></td>
</tr>
</tbody>
</table>

In detail, for the losses of agricultural production, the existed data from the KOICA F/S report are applied and converted to the border prices.

Table 8. Cost Estimates of Agricultural Product Losses

<table>
<thead>
<tr>
<th>Category</th>
<th>Crop Area (m²)</th>
<th>Unit Price (Rp.1000/m²)</th>
<th>Total, MP.* (Rp.1000)</th>
<th>SCF</th>
<th>Total, BP.* (Rp.1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice, paddy</td>
<td>56,000</td>
<td>1.5</td>
<td>84,000</td>
<td></td>
<td>18,533</td>
</tr>
<tr>
<td>Rubber</td>
<td>87,000</td>
<td>50</td>
<td>4,350,000</td>
<td></td>
<td>959,762</td>
</tr>
<tr>
<td>Bamboo</td>
<td>282,000</td>
<td>40</td>
<td>11,280,000</td>
<td>0.22</td>
<td>2,488,762</td>
</tr>
<tr>
<td>Rubber & Bamboo</td>
<td>406,000</td>
<td>50</td>
<td>20,030,000</td>
<td></td>
<td>4,478,889</td>
</tr>
<tr>
<td>Palm Oil Tree & Coconut</td>
<td>128,000</td>
<td>60</td>
<td>7,680,000</td>
<td></td>
<td>1,694,476</td>
</tr>
<tr>
<td>Total</td>
<td>959,000</td>
<td>-</td>
<td>43,424,000</td>
<td>-</td>
<td>9,640,422</td>
</tr>
</tbody>
</table>

* (MP.) = Market Price / (BP.) = Border Price

In case of the losses of biodiversity, I calculate a sum of a unit cost multiplied with the inundation area. I borrow a value of a biodiversity loss in a tropical forest of Indonesia by Ruitenbeek (1990). Here is how I got the total cost of the losses.
As a last category of indirect costs, carbon storage losses are estimated by a ‘replacement cost’ from an existed source. In the methodology, I mentioned two assumptions for the estimation; (i) 100 ton/yr. of carbon emitted by 1 hectare of deforestation, (ii) the damage cost of 13 USD/ton of carbon.

<table>
<thead>
<tr>
<th>Table 9. Cost Estimates of Biodiversity Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,628,500</td>
</tr>
<tr>
<td>3,000</td>
</tr>
<tr>
<td>27,900,000</td>
</tr>
<tr>
<td>2,790</td>
</tr>
<tr>
<td>60,343,515,000</td>
</tr>
<tr>
<td>60,344</td>
</tr>
</tbody>
</table>

Table 10. Cost Estimates of Carbon Storage Losses

1,300	USD/ha.
12,090,000	Rp./ha.
1,209	Rp./m²
26,148,856,500	Loss (Rp./year)
26,149	Loss (million Rp./year)

In the meantime, the total project benefits in the Scenario 2 would be same with the result of the Scenario 1. Additional benefits from flood control and recreation are not included in the indirect benefits because of constraints of the relevant data.

2. Economic Analysis

From the net balance of the costs and benefits, the NPV of Scenario 2 is Rp. 827,379 million, which is considered to be economically viable because the NPV is above zero (Refer to Figure 4 on the next page). With the NPV calculation, results of the CBA of the ‘Scenario 2’ are summarized (Table 11). The B/C Ratio is calculated at 3.88, which is greater than 1 and it analyzed as having economic feasibility. Meanwhile, the EIRR is analyzed as 25.69%,
which is larger than the discount rate, 12%. Therefore, it would be concluded to approve the alternative case, too.

Table 11. Summary of the CBA Results for the Karian Dam (Scenario 2)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV at the discount rate, 12%</td>
<td>Rp. 827,379 million</td>
</tr>
<tr>
<td>EIRR</td>
<td>25.69%</td>
</tr>
<tr>
<td>B/C Ratio</td>
<td>3.88</td>
</tr>
</tbody>
</table>

![Fig. 4. Comparison of Cumulative NPV Plot for Scenario 1 & 2 (2005-2061)](image)

Fig. 4. Comparison of Cumulative NPV Plot for Scenario 1 & 2 (2005-2061)

![Fig. 5. Comparison of NPV and EIRR Calculation in Scenario 1 & 2](image)

Fig. 5. Comparison of NPV and EIRR Calculation in Scenario 1 & 2
Throughout the Figure 5, the NPVs of the Scenario 1 and 2 can be obtained by the intersection points with the vertical line of the discount rate of 12%. Also the discount rates of the NPV that equal to zero are placed on the x-axis as the EIRR.

For the sensitivity analysis of the Scenario 2, I change the variables in the indirect costs in the following conditions; (i) increases of indirect costs that comprises agricultural product losses, biodiversity losses, and carbon storage losses by +10 ~ +20%, (ii) decreases of sales benefits by -10 ~ -20%, and (iii) combination of indirect costs +10 ~ +20% and sales benefits -10 ~ -20%. Here are the results of the sensitivity analysis (Table 12).

<table>
<thead>
<tr>
<th>Variations of Factor</th>
<th>EIRR (%)</th>
<th>NPV (million Rp.)</th>
<th>SI</th>
<th>SV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>25.69</td>
<td>827,379</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Case 1) Indirect Costs Increase by 10%</td>
<td>25.11</td>
<td>786,933</td>
<td>0.49</td>
<td>205</td>
</tr>
<tr>
<td>(Case 2) Indirect Costs Increase by 20%</td>
<td>24.51</td>
<td>746,487</td>
<td>0.49</td>
<td>205</td>
</tr>
<tr>
<td>(Case 3) Sales Benefit Decrease by 10%</td>
<td>23.21</td>
<td>653,943</td>
<td>2.10</td>
<td>48</td>
</tr>
<tr>
<td>(Case 4) Sales Benefit Decrease by 20%</td>
<td>20.55</td>
<td>480,507</td>
<td>2.10</td>
<td>48</td>
</tr>
<tr>
<td>(Case 5) Case 1 + Case 3</td>
<td>22.58</td>
<td>613,497</td>
<td>1.29</td>
<td>77</td>
</tr>
<tr>
<td>(Case 6) Case 2 + Case 4</td>
<td>19.21</td>
<td>399,614</td>
<td>1.29</td>
<td>77</td>
</tr>
</tbody>
</table>

The results indicate that the Karian Dam project is insensitive to all the changes of indirect costs. But the changes of sales benefit and the combination with the benefit are influential to the project because of SI > 1 or SV < 100%. Along with the Scenario 1, the sales benefit profoundly surpasses environmental costs as well as construction and operation costs. Insertion of the environmental damage costs in the CBA obviously deflates the net benefits of the project, although the impacts do not reverse the investment decision. The sensitivity analyses prove that the benefit of raw water supply needs to be accurately estimated because the NPV is changed negative if the benefit declines by 50%.
D. Discussion

The results of the above CBA show that the Karian Dam project has an economic feasibility. Compared to Scenario 1, Scenario 2 reflects environmental costs in the CBA. And all the indices of the economic analysis say that the project is still sound for investment. Both cases have a positive NPV, respectively. B/C ratios are more than 1, and EIRRs exceed the discount rate. Environmental values affect to reduce the net benefits. But the SI and the SV indicate that the project is not sensitive to the indirect costs, but to the sales benefit of raw water in the dam reservoir. The effect by the benefit from water supply is so powerful that acceptability of the Scenario 2 is same with that of the Scenario 1.

It is uncertain whether the benefit overwhelms other variables, either by the high priced water tariffs or massive flows of the supply. Therefore, the benefit would be subject to adjustment if there are no follow-up actions such as in control of water leakage and connection of water transmission pipelines. In addition, the indirect costs reflected in the losses of environmental values should not be limited to those occurring during the operation period. But they need to be analyzed to include the construction period or the post-project period in the CBA to fully understand the reality.

Finally, it is necessary to consider what discount rate would be applied to future environmental costs. A dam project has long-term impacts around the site, so that a lower rate would be applied to conversion of the indirect costs in the future to the present values. According to the Guideline of Economic Analysis on KOICA Projects (2017), multilateral development banks (MDB)\(^\text{19}\) have recently adopted different discount rates beside conventional discount rates, 10-15%, to reflect the real effects of projects, especially projects that highly generate social and environmental benefits and costs.

\(^{19}\) In 2017, ADB revised the discount rate from 12% to 9% because it attributes to improved income levels in Asian developing countries and lowered borrowing costs. Also the application was made by increases of the projects that give long-term impacts in social and environmental aspects (Ibid. 2017, 35).
CONCLUSION

For this research, I examined the economic feasibility of the Korean ODA funded dam project in progress with a hypothesis that environmental impacts valuated in the CBA are not powerful enough to reject the original decision for investment. My hypothesis is proved by the positive NPV, EIRR greater than the applied discount rate, and B/C ratio more than 1 in the alternative case. But the net benefit is reduced by 21% with insertion of the indirect costs. If the flood control benefit could be measured and counted in the CBA, the result would be close to the status quo. Furthermore, afforestation or a recreational spot development in the riparian area would make the project scheme increase indirect benefits leading to expansion of economic welfare.

The Karian Dam project has also significant impacts at the social perspective. The KOICA’s F/S report (2006) indicates that costs of compensation for the losses of livelihood and of job training for rehabilitation are included for the resettled villages. Although these are highly appreciated, the disbursement or operation of the programs should be implemented and managed in a sustainable and systematic manner. According to the JICA’s F/S report (1985), most of the residents as farmers, were reluctant to leave their economic bases. Accordingly, it is necessary to involve an extra program fostering their economic abilities such as manufacturing or service skills in the secondary or tertiary industries, in case that the farming in the relocated area cannot be secured as an income source in the future.

Throughout the study, I hope that the CBA used in the economic analysis of ODA projects will be conducted more accurately in terms of socio-environmental costs and benefits. In the time and money constraints, I showed a way to apply the cost and benefit
items quantified in other similar cases. In spite of limits to be directly applied for the differences of the estimated time and regions, a total exclusion of environmental applications by ecosystem complexity, uncertainty, and ignorance will detract the reliability of the CBA results. In particular, projects that have significant social and environmental impacts, such as dam construction, should apply a proper valuation method to quantify the values in association with other analyses including the CEA or risk assessment. Otherwise, the donor agencies can face future problems because of the factors that threaten the aid effectiveness.

In conclusion, the Karian Dam remains economically sound for investment since the CBA with environmental valuation has a same result with the original case. However, it is not clear if the project would be continuously acceptable when all the variables in social and environmental aspects are counted in the CBA. As one of critical factor in the project appraisal, mainstreaming the indirect impacts already becomes important. Finally, as a policy implication, attempts to accommodate the EIA (environmental impact assessment) into the CBA are needed. If so, qualitative EIA results are incorporated with the quantitative cost and benefit information, allowing a more comprehensive CBA that does not depend solely on the NPV or B/C ratio.
APPENDICES
Summary of Construction Costs for Karian Dam

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Works</th>
<th>Total Amount (Rp.)</th>
<th>Local (%)</th>
<th>Foreign (%)</th>
<th>Local Amount</th>
<th>Local → BPV (A)</th>
<th>Foreign Amount (B)</th>
<th>Total (A+B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Karian Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Construction of Dam & Appurtenant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>General Items</td>
<td>5,897,244,843</td>
<td>87%</td>
<td>13%</td>
<td>5,130,603,013</td>
<td>1,131,990,189</td>
<td></td>
<td>1,898,632,018</td>
</tr>
<tr>
<td>1.1.2</td>
<td>River Diversion</td>
<td>56,840,890,468</td>
<td>87%</td>
<td>13%</td>
<td>49,451,574,707</td>
<td>10,910,744,261</td>
<td></td>
<td>18,300,060,022</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Main Dam & Saddle Dam</td>
<td>215,577,029,725</td>
<td>87%</td>
<td>13%</td>
<td>187,552,015,861</td>
<td>41,380,524,134</td>
<td></td>
<td>69,405,537,999</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Spillway</td>
<td>107,216,707,777</td>
<td>87%</td>
<td>13%</td>
<td>93,278,535,766</td>
<td>20,580,502,336</td>
<td></td>
<td>21,808,038,093</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Intake & Outlet Facilities</td>
<td>12,969,947,028</td>
<td>87%</td>
<td>13%</td>
<td>11,283,853,914</td>
<td>2,489,612,213</td>
<td></td>
<td>1,778,466,137</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Hydromechanical Works</td>
<td>47,895,000,000</td>
<td>87%</td>
<td>13%</td>
<td>41,668,650,000</td>
<td>9,193,559,286</td>
<td></td>
<td>15,419,909,286</td>
</tr>
<tr>
<td>1.1.7</td>
<td>Road Works</td>
<td>63,028,285,500</td>
<td>87%</td>
<td>13%</td>
<td>54,834,608,385</td>
<td>12,094,677,115</td>
<td></td>
<td>20,292,106,584</td>
</tr>
<tr>
<td>1.1.8</td>
<td>Building Works</td>
<td>5,924,346,000</td>
<td>87%</td>
<td>13%</td>
<td>5,154,181,020</td>
<td>1,137,164,980</td>
<td></td>
<td>1,671,346,000</td>
</tr>
<tr>
<td>1.1.9</td>
<td>Electrical Works</td>
<td>59,566,379,585</td>
<td>87%</td>
<td>13%</td>
<td>51,822,750,239</td>
<td>11,433,908,386</td>
<td></td>
<td>19,177,537,732</td>
</tr>
<tr>
<td>1.1.10</td>
<td>Telecommunication & Control</td>
<td>3,857,267,146</td>
<td>87%</td>
<td>13%</td>
<td>3,355,822,417</td>
<td>740,411,613</td>
<td></td>
<td>1,041,564,529</td>
</tr>
<tr>
<td>1.1.11</td>
<td>Landscape Works</td>
<td>1,500,000,000</td>
<td>87%</td>
<td>13%</td>
<td>1,305,000,000</td>
<td>287,928,571</td>
<td></td>
<td>482,928,571</td>
</tr>
<tr>
<td>1.1.12</td>
<td>Operation & Maintenance Equipment</td>
<td>823,500,000</td>
<td>87%</td>
<td>13%</td>
<td>716,445,000</td>
<td>105,055,000</td>
<td></td>
<td>265,127,786</td>
</tr>
<tr>
<td></td>
<td>Subtotal 1.</td>
<td>581,096,598,072</td>
<td>87%</td>
<td>13%</td>
<td>505,554,040,323</td>
<td>111,542,875,563</td>
<td></td>
<td>187,085,433,313</td>
</tr>
<tr>
<td>2</td>
<td>Water Conveyance System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Construction of Waterway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>General Items</td>
<td>31,244,260,296</td>
<td>86%</td>
<td>14%</td>
<td>26,870,063,855</td>
<td>5,928,474,406</td>
<td></td>
<td>10,302,670,847</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Ciuyah Tunnel & Intake Shaft</td>
<td>89,029,297,363</td>
<td>86%</td>
<td>14%</td>
<td>76,565,195,732</td>
<td>16,892,955,884</td>
<td></td>
<td>24,489,1,631</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Waterway Pipeline System</td>
<td>832,170,527,717</td>
<td>86%</td>
<td>14%</td>
<td>715,666,653,837</td>
<td>157,901,055,370</td>
<td></td>
<td>274,404,929,251</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Booster Pump Station</td>
<td>73,644,595,578</td>
<td>86%</td>
<td>14%</td>
<td>63,334,352,197</td>
<td>13,973,769,770</td>
<td></td>
<td>24,284,013,151</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Electrical Works</td>
<td>39,122,051,344</td>
<td>86%</td>
<td>14%</td>
<td>33,644,964,156</td>
<td>7,423,253,996</td>
<td></td>
<td>12,900,341,184</td>
</tr>
<tr>
<td></td>
<td>Subtotal 2.</td>
<td>1,065,210,732,298</td>
<td>86%</td>
<td>14%</td>
<td>916,081,229,776</td>
<td>202,119,509,427</td>
<td></td>
<td>351,249,011,949</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>538,334,445,261</td>
</tr>
</tbody>
</table>
Summary of Project Costs for Karian Dam

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Works</th>
<th>Total Amount (Rp.)</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Karian Dam</td>
<td>187,085,433,313</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Construction of Dam & Appurtenant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Engineering Service</td>
<td>24,321,106,331</td>
<td>13% of 1.1</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Administrative Expenses</td>
<td>9,354,271,666</td>
<td>5% of 1.1</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Physical Contingency</td>
<td>18,708,543,331</td>
<td>10% of 1.1</td>
</tr>
<tr>
<td></td>
<td>Subtotal 1.</td>
<td>239,469,354,640</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Water Conveyance System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Construction of Waterway</td>
<td>351,249,011,949</td>
<td></td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Engineering Service</td>
<td>45,662,371,553</td>
<td>13% of 2.1</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Administrative Expenses</td>
<td>17,562,450,597</td>
<td>5% of 2.1</td>
</tr>
<tr>
<td>2.1.3.</td>
<td>Physical Contingency</td>
<td>35,124,901,195</td>
<td>10% of 2.1</td>
</tr>
<tr>
<td></td>
<td>Subtotal 2.</td>
<td>449,598,735,294</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compensation Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.</td>
<td>Compensation for Resettlement</td>
<td>58,166,204,762</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal 3.</td>
<td>58,166,204,762</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Operation & Maintenance Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Karian Dam</td>
<td>1,870,854,333</td>
<td>1% of 1.1</td>
</tr>
<tr>
<td>4.2</td>
<td>Water Conveyance System</td>
<td>3,512,490,119</td>
<td>1% of 2.1</td>
</tr>
<tr>
<td></td>
<td>Subtotal 4.</td>
<td>5,383,344,453</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>752,617,639,149</td>
<td></td>
</tr>
</tbody>
</table>
Estimated Benefit from Municipal & Industrial Water Supply

<table>
<thead>
<tr>
<th>Life Span</th>
<th>Year</th>
<th>Sales Water Price (A) (Rp./㎥)</th>
<th>Raw Water Price (B) (Rp./㎥)</th>
<th>Benefit of Raw Water Price (A-B) (Rp./㎥)</th>
<th>Production Water Supply per year (㎥)</th>
<th>Total Benefit of Water Supply (million Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>81,985</td>
<td>30,773</td>
<td>51,212</td>
<td>23,021,280,000</td>
<td>23,579,266</td>
</tr>
<tr>
<td>1</td>
<td>2012</td>
<td>1,340</td>
<td>503</td>
<td>837</td>
<td>460,425,600</td>
<td>385,398</td>
</tr>
<tr>
<td>2</td>
<td>2013</td>
<td>1,351</td>
<td>507</td>
<td>844</td>
<td>460,425,600</td>
<td>388,482</td>
</tr>
<tr>
<td>3</td>
<td>2014</td>
<td>1,362</td>
<td>511</td>
<td>850</td>
<td>460,425,600</td>
<td>391,589</td>
</tr>
<tr>
<td>4</td>
<td>2015</td>
<td>1,372</td>
<td>515</td>
<td>857</td>
<td>460,425,600</td>
<td>394,722</td>
</tr>
<tr>
<td>5</td>
<td>2016</td>
<td>1,383</td>
<td>519</td>
<td>864</td>
<td>460,425,600</td>
<td>397,880</td>
</tr>
<tr>
<td>6</td>
<td>2017</td>
<td>1,394</td>
<td>523</td>
<td>871</td>
<td>460,425,600</td>
<td>401,063</td>
</tr>
<tr>
<td>7</td>
<td>2018</td>
<td>1,406</td>
<td>528</td>
<td>878</td>
<td>460,425,600</td>
<td>404,271</td>
</tr>
<tr>
<td>8</td>
<td>2019</td>
<td>1,417</td>
<td>532</td>
<td>885</td>
<td>460,425,600</td>
<td>407,506</td>
</tr>
<tr>
<td>9</td>
<td>2020</td>
<td>1,428</td>
<td>536</td>
<td>892</td>
<td>460,425,600</td>
<td>410,766</td>
</tr>
<tr>
<td>10</td>
<td>2021</td>
<td>1,440</td>
<td>540</td>
<td>899</td>
<td>460,425,600</td>
<td>414,052</td>
</tr>
<tr>
<td>11</td>
<td>2022</td>
<td>1,451</td>
<td>545</td>
<td>906</td>
<td>460,425,600</td>
<td>417,364</td>
</tr>
<tr>
<td>12</td>
<td>2023</td>
<td>1,463</td>
<td>549</td>
<td>914</td>
<td>460,425,600</td>
<td>420,703</td>
</tr>
<tr>
<td>13</td>
<td>2024</td>
<td>1,474</td>
<td>553</td>
<td>921</td>
<td>460,425,600</td>
<td>424,069</td>
</tr>
<tr>
<td>14</td>
<td>2025</td>
<td>1,486</td>
<td>558</td>
<td>928</td>
<td>460,425,600</td>
<td>427,461</td>
</tr>
<tr>
<td>15</td>
<td>2026</td>
<td>1,498</td>
<td>562</td>
<td>936</td>
<td>460,425,600</td>
<td>430,881</td>
</tr>
<tr>
<td>16</td>
<td>2027</td>
<td>1,510</td>
<td>567</td>
<td>943</td>
<td>460,425,600</td>
<td>434,328</td>
</tr>
<tr>
<td>17</td>
<td>2028</td>
<td>1,522</td>
<td>571</td>
<td>951</td>
<td>460,425,600</td>
<td>437,803</td>
</tr>
<tr>
<td>18</td>
<td>2029</td>
<td>1,534</td>
<td>576</td>
<td>958</td>
<td>460,425,600</td>
<td>441,305</td>
</tr>
<tr>
<td>19</td>
<td>2030</td>
<td>1,547</td>
<td>581</td>
<td>966</td>
<td>460,425,600</td>
<td>444,836</td>
</tr>
<tr>
<td>20</td>
<td>2031</td>
<td>1,559</td>
<td>585</td>
<td>974</td>
<td>460,425,600</td>
<td>448,394</td>
</tr>
<tr>
<td>21</td>
<td>2032</td>
<td>1,572</td>
<td>590</td>
<td>982</td>
<td>460,425,600</td>
<td>451,981</td>
</tr>
<tr>
<td>22</td>
<td>2033</td>
<td>1,584</td>
<td>595</td>
<td>990</td>
<td>460,425,600</td>
<td>455,597</td>
</tr>
<tr>
<td>23</td>
<td>2034</td>
<td>1,597</td>
<td>599</td>
<td>997</td>
<td>460,425,600</td>
<td>459,242</td>
</tr>
<tr>
<td>24</td>
<td>2035</td>
<td>1,610</td>
<td>604</td>
<td>1,005</td>
<td>460,425,600</td>
<td>462,916</td>
</tr>
<tr>
<td>25</td>
<td>2036</td>
<td>1,622</td>
<td>609</td>
<td>1,013</td>
<td>460,425,600</td>
<td>466,619</td>
</tr>
<tr>
<td>26</td>
<td>2037</td>
<td>1,635</td>
<td>614</td>
<td>1,022</td>
<td>460,425,600</td>
<td>470,352</td>
</tr>
<tr>
<td>27</td>
<td>2038</td>
<td>1,648</td>
<td>619</td>
<td>1,030</td>
<td>460,425,600</td>
<td>474,115</td>
</tr>
<tr>
<td>28</td>
<td>2039</td>
<td>1,662</td>
<td>624</td>
<td>1,038</td>
<td>460,425,600</td>
<td>477,908</td>
</tr>
<tr>
<td>29</td>
<td>2040</td>
<td>1,675</td>
<td>629</td>
<td>1,046</td>
<td>460,425,600</td>
<td>481,731</td>
</tr>
<tr>
<td>30</td>
<td>2041</td>
<td>1,688</td>
<td>634</td>
<td>1,055</td>
<td>460,425,600</td>
<td>485,585</td>
</tr>
<tr>
<td>31</td>
<td>2042</td>
<td>1,702</td>
<td>639</td>
<td>1,063</td>
<td>460,425,600</td>
<td>489,470</td>
</tr>
<tr>
<td>32</td>
<td>2043</td>
<td>1,715</td>
<td>644</td>
<td>1,072</td>
<td>460,425,600</td>
<td>493,385</td>
</tr>
<tr>
<td>33</td>
<td>2044</td>
<td>1,729</td>
<td>649</td>
<td>1,080</td>
<td>460,425,600</td>
<td>497,333</td>
</tr>
<tr>
<td>34</td>
<td>2045</td>
<td>1,743</td>
<td>654</td>
<td>1,089</td>
<td>460,425,600</td>
<td>501,311</td>
</tr>
<tr>
<td>35</td>
<td>2046</td>
<td>1,757</td>
<td>659</td>
<td>1,098</td>
<td>460,425,600</td>
<td>505,322</td>
</tr>
</tbody>
</table>
Cost & Benefit Flow (Scenario 1)

(Unit: million Rp.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Construction Cost</th>
<th>Operating Cost</th>
<th>Total Cost</th>
<th>Total Benefit</th>
<th>Net Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2005</td>
<td>4,845</td>
<td>-</td>
<td>4,845</td>
<td>-</td>
<td>- 4,845</td>
</tr>
<tr>
<td>2</td>
<td>2006</td>
<td>4,845</td>
<td>-</td>
<td>4,845</td>
<td>-</td>
<td>- 4,845</td>
</tr>
<tr>
<td>3</td>
<td>2007</td>
<td>9,690</td>
<td>-</td>
<td>9,690</td>
<td>-</td>
<td>- 9,690</td>
</tr>
<tr>
<td>4</td>
<td>2008</td>
<td>196,505</td>
<td>-</td>
<td>196,505</td>
<td>-</td>
<td>- 196,505</td>
</tr>
<tr>
<td>5</td>
<td>2009</td>
<td>196,505</td>
<td>-</td>
<td>196,505</td>
<td>-</td>
<td>- 196,505</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>167,422</td>
<td>-</td>
<td>167,422</td>
<td>-</td>
<td>- 167,422</td>
</tr>
<tr>
<td>7</td>
<td>2011</td>
<td>167,422</td>
<td>-</td>
<td>167,422</td>
<td>-</td>
<td>- 167,422</td>
</tr>
<tr>
<td>8</td>
<td>2012</td>
<td>9,498</td>
<td>9,498</td>
<td>385,398</td>
<td>375,901</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>9,498</td>
<td>9,498</td>
<td>388,482</td>
<td>378,984</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2014</td>
<td>9,498</td>
<td>9,498</td>
<td>391,589</td>
<td>382,092</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2015</td>
<td>9,498</td>
<td>9,498</td>
<td>394,722</td>
<td>385,225</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2016</td>
<td>9,498</td>
<td>9,498</td>
<td>397,880</td>
<td>388,382</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2017</td>
<td>9,498</td>
<td>9,498</td>
<td>401,063</td>
<td>391,565</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2018</td>
<td>9,498</td>
<td>9,498</td>
<td>404,271</td>
<td>394,774</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2019</td>
<td>9,498</td>
<td>9,498</td>
<td>407,506</td>
<td>398,008</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2020</td>
<td>9,498</td>
<td>9,498</td>
<td>410,766</td>
<td>401,268</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2021</td>
<td>9,498</td>
<td>9,498</td>
<td>414,052</td>
<td>404,554</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2022</td>
<td>9,498</td>
<td>9,498</td>
<td>417,364</td>
<td>407,867</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2023</td>
<td>9,498</td>
<td>9,498</td>
<td>420,703</td>
<td>411,206</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2024</td>
<td>9,498</td>
<td>9,498</td>
<td>424,069</td>
<td>414,571</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2025</td>
<td>9,498</td>
<td>9,498</td>
<td>427,461</td>
<td>417,964</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2026</td>
<td>9,498</td>
<td>9,498</td>
<td>430,881</td>
<td>421,383</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2027</td>
<td>9,498</td>
<td>9,498</td>
<td>434,328</td>
<td>424,831</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2028</td>
<td>9,498</td>
<td>9,498</td>
<td>437,803</td>
<td>428,305</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2029</td>
<td>9,498</td>
<td>9,498</td>
<td>441,305</td>
<td>431,808</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2030</td>
<td>9,498</td>
<td>9,498</td>
<td>444,836</td>
<td>435,338</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2031</td>
<td>9,498</td>
<td>9,498</td>
<td>448,394</td>
<td>438,897</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2032</td>
<td>9,498</td>
<td>9,498</td>
<td>451,981</td>
<td>419,979</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2033</td>
<td>9,498</td>
<td>9,498</td>
<td>455,597</td>
<td>446,100</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2034</td>
<td>9,498</td>
<td>9,498</td>
<td>459,242</td>
<td>449,744</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2035</td>
<td>9,498</td>
<td>9,498</td>
<td>462,916</td>
<td>453,418</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2036</td>
<td>9,498</td>
<td>9,498</td>
<td>466,619</td>
<td>457,122</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2037</td>
<td>9,498</td>
<td>9,498</td>
<td>470,352</td>
<td>460,855</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2038</td>
<td>9,498</td>
<td>9,498</td>
<td>474,115</td>
<td>464,617</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2039</td>
<td>9,498</td>
<td>9,498</td>
<td>477,908</td>
<td>468,410</td>
<td></td>
</tr>
</tbody>
</table>

Total:
- Operating Cost: 519,886 million Rp.
- Total Cost: 1,267,120 million Rp.
<table>
<thead>
<tr>
<th>Year</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
<td>9,498</td>
<td>9,498</td>
<td>481,731</td>
<td>472,234</td>
</tr>
<tr>
<td>2041</td>
<td>9,498</td>
<td>9,498</td>
<td>485,585</td>
<td>476,088</td>
</tr>
<tr>
<td>2042</td>
<td>9,498</td>
<td>9,498</td>
<td>489,470</td>
<td>479,972</td>
</tr>
<tr>
<td>2043</td>
<td>9,498</td>
<td>9,498</td>
<td>493,385</td>
<td>483,888</td>
</tr>
<tr>
<td>2044</td>
<td>9,498</td>
<td>9,498</td>
<td>497,333</td>
<td>487,835</td>
</tr>
<tr>
<td>2045</td>
<td>9,498</td>
<td>9,498</td>
<td>501,311</td>
<td>491,814</td>
</tr>
<tr>
<td>2046</td>
<td>9,498</td>
<td>9,498</td>
<td>505,322</td>
<td>495,824</td>
</tr>
<tr>
<td>2047</td>
<td>9,498</td>
<td>9,498</td>
<td>509,364</td>
<td>499,867</td>
</tr>
<tr>
<td>2048</td>
<td>9,498</td>
<td>9,498</td>
<td>513,439</td>
<td>503,942</td>
</tr>
<tr>
<td>2049</td>
<td>9,498</td>
<td>9,498</td>
<td>517,547</td>
<td>508,049</td>
</tr>
<tr>
<td>2050</td>
<td>9,498</td>
<td>9,498</td>
<td>521,687</td>
<td>512,190</td>
</tr>
<tr>
<td>2051</td>
<td>9,498</td>
<td>9,498</td>
<td>525,861</td>
<td>516,363</td>
</tr>
<tr>
<td>2052</td>
<td>9,498</td>
<td>9,498</td>
<td>530,067</td>
<td>520,570</td>
</tr>
<tr>
<td>2053</td>
<td>9,498</td>
<td>9,498</td>
<td>534,308</td>
<td>524,810</td>
</tr>
<tr>
<td>2054</td>
<td>9,498</td>
<td>9,498</td>
<td>538,582</td>
<td>529,085</td>
</tr>
<tr>
<td>2055</td>
<td>9,498</td>
<td>9,498</td>
<td>542,891</td>
<td>533,394</td>
</tr>
<tr>
<td>2056</td>
<td>9,498</td>
<td>9,498</td>
<td>547,234</td>
<td>537,737</td>
</tr>
<tr>
<td>2057</td>
<td>9,498</td>
<td>9,498</td>
<td>551,612</td>
<td>542,115</td>
</tr>
<tr>
<td>2058</td>
<td>9,498</td>
<td>9,498</td>
<td>556,025</td>
<td>546,528</td>
</tr>
<tr>
<td>2059</td>
<td>9,498</td>
<td>9,498</td>
<td>560,473</td>
<td>550,976</td>
</tr>
<tr>
<td>2060</td>
<td>9,498</td>
<td>9,498</td>
<td>564,957</td>
<td>555,460</td>
</tr>
<tr>
<td>2061</td>
<td>32,003</td>
<td>32,003</td>
<td>569,477</td>
<td>537,474</td>
</tr>
</tbody>
</table>
Cost & Benefit Flow (Scenario 2)

(Unit: million Rp.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Direct Cost</th>
<th>Agricultural Product Loss</th>
<th>Biodiversity Loss</th>
<th>Carbon Storage Loss</th>
<th>Total Cost</th>
<th>Total Benefit</th>
<th>Net Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>1,267,120</td>
<td>482,021</td>
<td>3,017,176</td>
<td>1,307,443</td>
<td>6,073,760</td>
<td>23,579,266</td>
<td>17,505,506</td>
</tr>
<tr>
<td>1</td>
<td>2005</td>
<td>4,845</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,845</td>
<td>-</td>
<td>- 4,845</td>
</tr>
<tr>
<td>2</td>
<td>2006</td>
<td>4,845</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,845</td>
<td>-</td>
<td>- 4,845</td>
</tr>
<tr>
<td>3</td>
<td>2007</td>
<td>9,690</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,690</td>
<td>-</td>
<td>- 9,690</td>
</tr>
<tr>
<td>4</td>
<td>2008</td>
<td>196,505</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>196,505</td>
<td>-</td>
<td>- 196,505</td>
</tr>
<tr>
<td>5</td>
<td>2009</td>
<td>196,505</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>196,505</td>
<td>-</td>
<td>- 196,505</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>167,422</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>167,422</td>
<td>-</td>
<td>- 167,422</td>
</tr>
<tr>
<td>7</td>
<td>2011</td>
<td>167,422</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>167,422</td>
<td>-</td>
<td>- 167,422</td>
</tr>
<tr>
<td>8</td>
<td>2012</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>385,398</td>
<td>279,768</td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>388,482</td>
<td>282,851</td>
</tr>
<tr>
<td>10</td>
<td>2014</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>391,589</td>
<td>285,959</td>
</tr>
<tr>
<td>11</td>
<td>2015</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>394,722</td>
<td>289,092</td>
</tr>
<tr>
<td>12</td>
<td>2016</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>397,880</td>
<td>292,250</td>
</tr>
<tr>
<td>13</td>
<td>2017</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>401,063</td>
<td>295,433</td>
</tr>
<tr>
<td>14</td>
<td>2018</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>404,271</td>
<td>298,641</td>
</tr>
<tr>
<td>15</td>
<td>2019</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>407,506</td>
<td>301,875</td>
</tr>
<tr>
<td>16</td>
<td>2020</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>410,766</td>
<td>305,135</td>
</tr>
<tr>
<td>17</td>
<td>2021</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>414,052</td>
<td>308,421</td>
</tr>
<tr>
<td>18</td>
<td>2022</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>417,364</td>
<td>311,734</td>
</tr>
<tr>
<td>19</td>
<td>2023</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>420,703</td>
<td>315,073</td>
</tr>
<tr>
<td>20</td>
<td>2024</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>424,069</td>
<td>318,383</td>
</tr>
<tr>
<td>21</td>
<td>2025</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>427,461</td>
<td>321,831</td>
</tr>
<tr>
<td>22</td>
<td>2026</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>430,881</td>
<td>325,251</td>
</tr>
<tr>
<td>23</td>
<td>2027</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>434,328</td>
<td>328,698</td>
</tr>
<tr>
<td>24</td>
<td>2028</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>437,803</td>
<td>332,172</td>
</tr>
<tr>
<td>25</td>
<td>2029</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>441,305</td>
<td>335,675</td>
</tr>
<tr>
<td>26</td>
<td>2030</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>444,836</td>
<td>339,205</td>
</tr>
<tr>
<td>27</td>
<td>2031</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>448,394</td>
<td>342,764</td>
</tr>
<tr>
<td>28</td>
<td>2032</td>
<td>32,003</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>128,135</td>
<td>451,981</td>
<td>323,846</td>
</tr>
<tr>
<td>29</td>
<td>2033</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>455,597</td>
<td>349,967</td>
</tr>
<tr>
<td>30</td>
<td>2034</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>459,242</td>
<td>353,612</td>
</tr>
<tr>
<td>31</td>
<td>2035</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>462,916</td>
<td>357,286</td>
</tr>
<tr>
<td>32</td>
<td>2036</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>466,619</td>
<td>360,989</td>
</tr>
<tr>
<td>33</td>
<td>2037</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>470,352</td>
<td>364,722</td>
</tr>
<tr>
<td>34</td>
<td>2038</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>474,115</td>
<td>368,485</td>
</tr>
<tr>
<td>35</td>
<td>2039</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>477,908</td>
<td>372,278</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2040</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>481,731</td>
<td>376,101</td>
</tr>
<tr>
<td>37</td>
<td>2041</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>485,585</td>
<td>379,955</td>
</tr>
<tr>
<td>38</td>
<td>2042</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>489,470</td>
<td>383,839</td>
</tr>
<tr>
<td>39</td>
<td>2043</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>493,385</td>
<td>387,755</td>
</tr>
<tr>
<td>40</td>
<td>2044</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>497,333</td>
<td>391,702</td>
</tr>
<tr>
<td>41</td>
<td>2045</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>501,311</td>
<td>395,681</td>
</tr>
<tr>
<td>42</td>
<td>2046</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>505,322</td>
<td>399,691</td>
</tr>
<tr>
<td>43</td>
<td>2047</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>509,364</td>
<td>403,734</td>
</tr>
<tr>
<td>44</td>
<td>2048</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>513,439</td>
<td>407,809</td>
</tr>
<tr>
<td>45</td>
<td>2049</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>517,547</td>
<td>411,916</td>
</tr>
<tr>
<td>46</td>
<td>2050</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>521,687</td>
<td>416,057</td>
</tr>
<tr>
<td>47</td>
<td>2051</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>525,861</td>
<td>420,230</td>
</tr>
<tr>
<td>48</td>
<td>2052</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>530,067</td>
<td>424,437</td>
</tr>
<tr>
<td>49</td>
<td>2053</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>534,308</td>
<td>428,678</td>
</tr>
<tr>
<td>50</td>
<td>2054</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>538,582</td>
<td>432,952</td>
</tr>
<tr>
<td>51</td>
<td>2055</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>542,891</td>
<td>437,261</td>
</tr>
<tr>
<td>52</td>
<td>2056</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>547,234</td>
<td>441,604</td>
</tr>
<tr>
<td>53</td>
<td>2057</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>551,612</td>
<td>445,982</td>
</tr>
<tr>
<td>54</td>
<td>2058</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>556,025</td>
<td>450,395</td>
</tr>
<tr>
<td>55</td>
<td>2059</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>560,473</td>
<td>454,843</td>
</tr>
<tr>
<td>56</td>
<td>2060</td>
<td>9,498</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>105,630</td>
<td>564,957</td>
<td>459,327</td>
</tr>
<tr>
<td>57</td>
<td>2061</td>
<td>32,003</td>
<td>9,640</td>
<td>60,344</td>
<td>26,149</td>
<td>128,135</td>
<td>569,477</td>
<td>441,341</td>
</tr>
</tbody>
</table>
Sensitivity Analysis (Scenario 1)

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Base Case</th>
<th>Case 1 Operating Cost</th>
<th>Case 2 Operating Cost</th>
<th>Case 3 Sales Benefit</th>
<th>Case 4 Sales Benefit</th>
<th>Case 2 + Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>+10%</td>
<td>+20%</td>
<td>-10%</td>
<td>-20%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIRR (%)</td>
<td>31.13</td>
<td>31.08</td>
<td>31.03</td>
<td>28.97</td>
<td>26.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPV</td>
<td>1,231,840</td>
<td>1,227,735</td>
<td>1,223,629</td>
<td>1,058,404</td>
<td>884,968</td>
</tr>
<tr>
<td>SI</td>
<td>1</td>
<td>-</td>
<td>0.03</td>
<td>0.03</td>
<td>1.41</td>
<td>1.41</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2008</td>
<td>-196,505</td>
<td>-196,505</td>
<td>-196,505</td>
<td>-196,505</td>
<td>-196,505</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2009</td>
<td>-196,505</td>
<td>-196,505</td>
<td>-196,505</td>
<td>-196,505</td>
<td>-196,505</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2010</td>
<td>-167,422</td>
<td>-167,422</td>
<td>-167,422</td>
<td>-167,422</td>
<td>-167,422</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2011</td>
<td>-167,422</td>
<td>-167,422</td>
<td>-167,422</td>
<td>-167,422</td>
<td>-167,422</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2012</td>
<td>375,901</td>
<td>374,951</td>
<td>374,001</td>
<td>337,361</td>
<td>298,821</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2013</td>
<td>378,984</td>
<td>378,034</td>
<td>377,085</td>
<td>340,136</td>
<td>301,288</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2014</td>
<td>382,092</td>
<td>381,142</td>
<td>380,192</td>
<td>342,933</td>
<td>303,774</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2015</td>
<td>385,225</td>
<td>384,275</td>
<td>383,325</td>
<td>345,752</td>
<td>306,280</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2016</td>
<td>388,382</td>
<td>387,433</td>
<td>386,483</td>
<td>348,594</td>
<td>308,806</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2017</td>
<td>391,565</td>
<td>390,616</td>
<td>389,666</td>
<td>351,459</td>
<td>311,353</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2018</td>
<td>394,774</td>
<td>393,824</td>
<td>392,874</td>
<td>354,347</td>
<td>313,920</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2019</td>
<td>398,008</td>
<td>397,058</td>
<td>396,109</td>
<td>357,258</td>
<td>316,507</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2020</td>
<td>401,268</td>
<td>400,318</td>
<td>399,369</td>
<td>360,192</td>
<td>319,115</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2021</td>
<td>404,554</td>
<td>403,605</td>
<td>402,655</td>
<td>363,149</td>
<td>321,744</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2022</td>
<td>407,867</td>
<td>406,917</td>
<td>405,967</td>
<td>366,130</td>
<td>324,394</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2023</td>
<td>411,260</td>
<td>410,256</td>
<td>409,306</td>
<td>369,135</td>
<td>327,065</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2024</td>
<td>414,571</td>
<td>413,621</td>
<td>412,672</td>
<td>372,164</td>
<td>329,757</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2025</td>
<td>417,964</td>
<td>417,014</td>
<td>416,064</td>
<td>375,218</td>
<td>332,472</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2026</td>
<td>421,383</td>
<td>420,434</td>
<td>419,484</td>
<td>378,295</td>
<td>335,207</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2027</td>
<td>424,831</td>
<td>423,881</td>
<td>422,931</td>
<td>381,398</td>
<td>337,965</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2028</td>
<td>428,305</td>
<td>427,355</td>
<td>426,406</td>
<td>384,525</td>
<td>340,745</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2029</td>
<td>431,808</td>
<td>430,858</td>
<td>429,908</td>
<td>387,677</td>
<td>343,547</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2030</td>
<td>435,338</td>
<td>434,388</td>
<td>433,438</td>
<td>390,854</td>
<td>346,371</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2031</td>
<td>438,897</td>
<td>437,947</td>
<td>436,997</td>
<td>394,057</td>
<td>349,218</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2032</td>
<td>419,979</td>
<td>416,779</td>
<td>413,578</td>
<td>374,781</td>
<td>329,583</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2033</td>
<td>446,100</td>
<td>445,150</td>
<td>444,200</td>
<td>400,540</td>
<td>354,980</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2034</td>
<td>449,744</td>
<td>448,795</td>
<td>447,845</td>
<td>403,820</td>
<td>357,896</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2035</td>
<td>453,418</td>
<td>452,469</td>
<td>451,519</td>
<td>407,127</td>
<td>360,835</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2036</td>
<td>457,122</td>
<td>456,172</td>
<td>455,222</td>
<td>410,460</td>
<td>363,798</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2037</td>
<td>460,855</td>
<td>459,905</td>
<td>458,955</td>
<td>413,819</td>
<td>366,784</td>
</tr>
<tr>
<td>Year</td>
<td>Numbers</td>
<td>Numbers</td>
<td>Numbers</td>
<td>Numbers</td>
<td>Numbers</td>
<td>Numbers</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2038</td>
<td>464,617</td>
<td>463,668</td>
<td>462,718</td>
<td>417,206</td>
<td>369,794</td>
<td>367,895</td>
<td></td>
</tr>
<tr>
<td>2039</td>
<td>468,410</td>
<td>467,461</td>
<td>466,511</td>
<td>420,620</td>
<td>372,829</td>
<td>370,929</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>472,234</td>
<td>471,284</td>
<td>470,334</td>
<td>424,061</td>
<td>375,887</td>
<td>373,988</td>
<td></td>
</tr>
<tr>
<td>2041</td>
<td>476,088</td>
<td>475,138</td>
<td>474,188</td>
<td>427,529</td>
<td>378,971</td>
<td>377,071</td>
<td></td>
</tr>
<tr>
<td>2042</td>
<td>479,972</td>
<td>479,022</td>
<td>478,073</td>
<td>431,025</td>
<td>382,078</td>
<td>380,179</td>
<td></td>
</tr>
<tr>
<td>2043</td>
<td>483,888</td>
<td>482,938</td>
<td>481,988</td>
<td>434,549</td>
<td>385,211</td>
<td>383,311</td>
<td></td>
</tr>
<tr>
<td>2044</td>
<td>487,835</td>
<td>486,885</td>
<td>485,936</td>
<td>438,102</td>
<td>388,369</td>
<td>386,469</td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>491,814</td>
<td>490,864</td>
<td>489,914</td>
<td>441,683</td>
<td>391,551</td>
<td>389,652</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>495,824</td>
<td>494,874</td>
<td>493,925</td>
<td>445,292</td>
<td>394,760</td>
<td>392,860</td>
<td></td>
</tr>
<tr>
<td>2047</td>
<td>499,867</td>
<td>498,917</td>
<td>497,967</td>
<td>448,930</td>
<td>397,994</td>
<td>396,094</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>503,942</td>
<td>502,992</td>
<td>502,042</td>
<td>452,598</td>
<td>401,254</td>
<td>399,354</td>
<td></td>
</tr>
<tr>
<td>2049</td>
<td>508,049</td>
<td>507,099</td>
<td>506,150</td>
<td>456,295</td>
<td>404,540</td>
<td>402,640</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>512,190</td>
<td>511,240</td>
<td>510,290</td>
<td>460,021</td>
<td>407,852</td>
<td>405,953</td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>516,363</td>
<td>515,413</td>
<td>514,464</td>
<td>463,777</td>
<td>411,191</td>
<td>409,291</td>
<td></td>
</tr>
<tr>
<td>2052</td>
<td>520,570</td>
<td>519,620</td>
<td>518,670</td>
<td>467,563</td>
<td>414,556</td>
<td>412,657</td>
<td></td>
</tr>
<tr>
<td>2053</td>
<td>524,810</td>
<td>523,861</td>
<td>522,911</td>
<td>471,380</td>
<td>417,949</td>
<td>416,049</td>
<td></td>
</tr>
<tr>
<td>2054</td>
<td>529,085</td>
<td>528,135</td>
<td>527,185</td>
<td>475,227</td>
<td>421,368</td>
<td>419,469</td>
<td></td>
</tr>
<tr>
<td>2055</td>
<td>533,394</td>
<td>532,444</td>
<td>531,494</td>
<td>479,105</td>
<td>424,815</td>
<td>422,916</td>
<td></td>
</tr>
<tr>
<td>2056</td>
<td>537,737</td>
<td>536,787</td>
<td>535,837</td>
<td>483,013</td>
<td>428,290</td>
<td>426,390</td>
<td></td>
</tr>
<tr>
<td>2057</td>
<td>542,115</td>
<td>541,165</td>
<td>540,215</td>
<td>486,953</td>
<td>431,792</td>
<td>429,893</td>
<td></td>
</tr>
<tr>
<td>2058</td>
<td>546,528</td>
<td>545,578</td>
<td>544,628</td>
<td>490,925</td>
<td>435,323</td>
<td>433,423</td>
<td></td>
</tr>
<tr>
<td>2059</td>
<td>550,976</td>
<td>550,026</td>
<td>549,076</td>
<td>494,928</td>
<td>438,881</td>
<td>436,982</td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td>555,460</td>
<td>554,510</td>
<td>553,560</td>
<td>498,964</td>
<td>442,468</td>
<td>440,569</td>
<td></td>
</tr>
<tr>
<td>2061</td>
<td>537,474</td>
<td>534,274</td>
<td>531,074</td>
<td>480,527</td>
<td>423,579</td>
<td>417,178</td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity Analysis (Scenario 2)

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Base Case</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 1 + Case 3</th>
<th>Case 2 + Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EIRR (%</td>
<td></td>
<td>NPV</td>
<td>SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2005</td>
<td>-4,845</td>
<td>25.69</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>2</td>
<td>2006</td>
<td>-4,845</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>3</td>
<td>2007</td>
<td>-9,690</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>4</td>
<td>2008</td>
<td>-196,505</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>5</td>
<td>2009</td>
<td>-196,505</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>-167,422</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>7</td>
<td>2011</td>
<td>-167,422</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>8</td>
<td>2012</td>
<td>279,768</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>282,851</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>11</td>
<td>2015</td>
<td>289,092</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>12</td>
<td>2016</td>
<td>292,250</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>14</td>
<td>2018</td>
<td>298,641</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>15</td>
<td>2019</td>
<td>301,875</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>16</td>
<td>2020</td>
<td>305,135</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>17</td>
<td>2021</td>
<td>308,421</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>18</td>
<td>2022</td>
<td>311,734</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>19</td>
<td>2023</td>
<td>315,073</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>20</td>
<td>2024</td>
<td>318,438</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>21</td>
<td>2025</td>
<td>321,831</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>22</td>
<td>2026</td>
<td>325,251</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>23</td>
<td>2027</td>
<td>328,698</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>24</td>
<td>2028</td>
<td>332,172</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>25</td>
<td>2029</td>
<td>335,675</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>26</td>
<td>2030</td>
<td>339,205</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>27</td>
<td>2031</td>
<td>342,764</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>28</td>
<td>2032</td>
<td>343,348</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>29</td>
<td>2033</td>
<td>349,967</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>30</td>
<td>2034</td>
<td>353,612</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>31</td>
<td>2035</td>
<td>357,286</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>32</td>
<td>2036</td>
<td>360,989</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
<tr>
<td>33</td>
<td>2037</td>
<td>364,722</td>
<td>24.51</td>
<td>25.11</td>
<td>24.51</td>
<td>23.21</td>
<td>20.55</td>
<td>22.58</td>
</tr>
</tbody>
</table>

(Unit: million Rp.)
| | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 |
|----|------|
| 34 | 368,485 | 358,871 | 349,258 | 321,073 | 273,662 | 311,460 | 254,435 |
| 35 | 372,278 | 362,664 | 353,051 | 324,487 | 276,696 | 314,874 | 257,469 |
| 36 | 376,101 | 366,488 | 356,874 | 327,928 | 279,755 | 318,314 | 260,528 |
| 37 | 379,955 | 370,341 | 360,728 | 331,396 | 282,838 | 321,783 | 263,611 |
| 38 | 383,839 | 374,226 | 364,613 | 334,892 | 285,945 | 328,030 | 269,852 |
| 39 | 387,755 | 375,072 | 368,089 | 338,417 | 289,078 | 328,356 | 273,009 |
| 40 | 391,702 | 382,089 | 376,465 | 341,969 | 292,236 | 332,356 | 267,192 |
| 41 | 395,681 | 386,068 | 376,454 | 345,550 | 295,419 | 335,937 | 276,192 |
| 42 | 399,691 | 390,078 | 380,465 | 349,159 | 298,627 | 339,546 | 279,400 |
| 43 | 403,734 | 394,121 | 384,507 | 352,798 | 301,861 | 343,184 | 282,635 |
| 44 | 407,809 | 398,196 | 388,582 | 356,465 | 305,121 | 346,852 | 285,894 |
| 45 | 411,916 | 402,303 | 392,690 | 360,162 | 308,407 | 350,548 | 289,180 |
| 46 | 416,057 | 406,443 | 396,830 | 363,888 | 311,719 | 354,275 | 292,493 |
| 47 | 420,230 | 410,617 | 401,004 | 367,644 | 315,058 | 358,031 | 295,832 |
| 48 | 424,437 | 414,824 | 405,211 | 371,430 | 318,424 | 361,817 | 299,197 |
| 49 | 428,678 | 419,064 | 409,451 | 375,247 | 321,816 | 365,634 | 302,590 |
| 50 | 432,952 | 423,339 | 413,726 | 379,094 | 325,236 | 369,481 | 306,009 |
| 51 | 437,261 | 427,648 | 418,034 | 382,972 | 328,683 | 373,358 | 309,456 |
| 52 | 441,604 | 431,991 | 422,377 | 386,881 | 332,157 | 377,267 | 312,931 |
| 53 | 445,982 | 436,369 | 426,755 | 390,821 | 335,659 | 381,207 | 316,433 |
| 54 | 450,395 | 440,781 | 431,168 | 394,792 | 339,190 | 385,179 | 319,963 |
| 55 | 454,843 | 445,230 | 435,616 | 398,796 | 342,748 | 389,182 | 323,522 |
| 56 | 459,327 | 449,713 | 440,100 | 402,831 | 346,335 | 393,218 | 327,109 |
| 57 | 441,341 | 431,728 | 422,115 | 384,394 | 327,446 | 374,780 | 308,219 |
BIBLIOGRAPHY

-----------. *Report and Recommendation of the President to the Board of Directors on a Proposed Loan and Technical Assistance Grant to the Republic of Indonesia for the South Java Flood Control Sector Project*. 1996.

