THE EFFECT OF MOTHERS' EDUCATION ON UNDER-FIVE MORTALITY FROM DEVELOPING COUNTRIES IN SOUTH EAST ASIA

By

Hnin Thant Phyu

THESIS

Submitted to KDI School of Public Policy and Management in partial fulfillment of the requirements for the degree of

MASTER OF PUBLIC POLICY

2016

THE EFFECT OF MOTHERS' EDUCATION ON UNDER-FIVE MORTALITY FROM DEVELOPING COUNTRIES IN SOUTH EAST ASIA

By

Hnin Thant Phyu

THESIS

Submitted to KDI School of Public Policy and Management in partial fulfillment of the requirements for the degree of

MASTER OF PUBLIC POLICY

2016

Professor Seulki Choi

THE EFFECT OF MOTHERS' EDUCATION ON UNDER-FIVE MORTALITY FROM DEVELOPING COUNTRIES IN SOUTH EAST ASIA

By

Hnin Thant Phyu

THESIS

Submitted to KDI School of Public Policy and Management in partial fulfillment of the requirements for the degree of

MASTER OF PUBLIC POLICY

Committee in charge:

The boy

Changyong Choi

Professor Changyong CHOI

Professor Seulki CHOI, Supervisor

Professor Jaeun SHIN

Jaeun Shrin

Approval as of December, 2016

ABSTRACT

This paper aims to contribute for the understanding of factors measuring mothers' educational levels on under-five children mortality from developing countries in South East Asia. Because extremely poverty remains a huge challenge in the South East Asia's developing countries. Set of factors related to socio-economic status on children survival. My study chose under-five mortality because it can influence infant and underone mortality as well as Millennium Development Goals (MDG)'s indicator. My study of regression confirmed a strong association between mother's education and under-five child mortality and remained significant after control for other factors.

The result imply that big part of the effect of mothers' education levels (primary, secondary and tertiary) can be substituted by investing than other factors. Investment of girls' schooling is still one of the essential ways to contribute for child survival improvement in the long run because the findings of this research agree that "Mother is school". On the other hand, the study of these areas will sustain the vital two sectors from policy makers. This paper was established that mothers' education has a negative impact on children mortality mostly; policy makers in region will have to focus their efforts on enhancing investment of education sector and reducing under-five child mortality by improving the performance of female education in these regions.

Copyright by

Hnin Thant Phyu (Full legal name)

2016 (Year of publication)

ACKNOWLEDGEMENTS

First and foremost I would like to express my earnest gratitude to my supervisors Prof. Seulki Choi and Prof. Changyong Choi. I really appreciate for the inspiration from their guidelines, the encouragement and constructive comments which received during research thesis paper writing.

I am always grateful to my beloved parents and my sister because of their unbounded help and hind encouragement. And I appreciate to Dr. Wah Wah Maung - my Director General from Central Statistical Organization (CSO) of Myanmar for the permission and giving opportunity to attend this school, Mr. Kitada San - Director from SIAP in Japan who encouraged me to do this work, Professor Dr. Hnin Hnin Oo - Head of Mathematics Department of Kyaing Tong University and Professor Dr. Basu from ISEC of India who raised me with their hands wherever I need them.

I also thank to my mutual friends and their supports. Without all of you, my stay at KDI cannot be. This chance would not have been created without the financial support from KOICA. Therefore, I am highly thankful to the founders and faculty members of KOICA-MDI Organization.

Table of Contents

I.	INTRODUCTION1
1.1.	Background of the Study1
1.2.	Statement of the Problems/issues1
1.3.	Purpose of the Study2
1.4.	The Objectives of the study
1.5.	Research questions
1.6.	Study Hypothesis
1.7.	Structure of the Paper4
II.	LITERATURE REVIEW5
2.1.	Theoretical Background5
2.2.	The Impact of Population Size and Population Growth5
2.3.	The Effect of Maternal Education on Child Survival6
2.4.	The Relationship between Child Survival and a Mother's Health Based
	Socioeconomic Status as Variables6
2.5.	Long Term Effect of Maternal Education on under-five child mortality7
2.6.	The Relationship between Maternal Education and Child Survival based Spatial
	Demographic Analysis8
III.	THEORETICAL FRAMEWORK10
3.1.	Mosley-Chen's Conceptual Model of Mortality10
3.2.	Leroy Almendarez's Human Capital Theory10
IV.	METHODOLOGY12
4.1.	Conceptual Framework12
4.2.	Model Specification
4.3.	Limitations of the Study and Data Sources15
4.4.	Data Analysis with Panel Data15
4.4.1.	Modeling under-five mortality rate on the female, primary school enrollment with
	Fixed Effects: Hausman Test17
4.4.2.	Results of the regressions for the female, primary school enrollment – under-five
	mortality rate
4.4.3.	Modeling under-five mortality rate on the female, secondary school enrollment with

Appendix : R	ESEARCHDATA	35
VIII.	APPENDICES	34
VII.	BIBLIOGRAPHY	31
VI.	CONCLUSION	30
V.	DISCUSSION	29
4.4.7.	Findings of the overall female school enrollment regression model	27
	mortality rate regression	24
4.4.6.	Results of the regressions for the female, tertiary school enrollment – under-five	
	Fixed Effects: Hausman Test	23
4.4.5.	Modeling under-five mortality rate on the female, tertiary school enrollment with	
	mortality rate regression	21
4.4.4.	Results of the regressions for the female, secondary school enrollment - under-five	е
	Fixed Effects: Hausman Test	20

LIST OF GRAPH & FIGURES

1. Under five mortality graph with countries by years	2
2. Figure 1: Conceptual Framework of Child Mortality [Source: Mosley and Chen (1984)]	10
3. Figure 2: Conceptual Framework of Child Mortality	12
4. Graph: Yearly Under-five Mortality (U5MR) Graph by Country from 2000 to 2015	16

LIST OF TABLES

Table 1: Description of Variables	14-15
Table 2: Summary Statistics for Analysis	17
Table 3: Results of the Hausman test for the <i>primary</i> female on U5MR	18
Table 4: Results of the regressions for the <i>primary</i> female on U5MR	19
Table 5: Results of the Hausman test for the <i>secondary</i> female on U5MR	21
Table 6: Results of the regressions for the <i>secondary</i> female on U5MR	22
Table 7: Results of the Hausman test for the <i>tertiary</i> female on U5MR	24
Table 8: Results of the regressions for the <i>tertiary</i> female on U5MR	25
Table 9: Results of the regressions for the female school enrollment on U5MR	27

I. INTRODUCTION

1.1. Background of the Study

Although some South East Asia countries had already developed, most of South East Asian countries were as developing countries. Moreover, extremely poverty remains a huge challenge in the South East Asia countries as Least Development Countries (LDCs). Therefore, income and demographic characteristics has widened continuously with developed countries in region. R. Fuchs, W. Lutz and E. Pamuk mentioned that different policy implications approved especially with respect to reducing child mortality in developing countries although most studies regarded education and income as interchangeable measures of socio-economic status. Because mothers' levels of schooling and learning performance can improve the children' lives as well as decrease child mortality. Although we have various kinds of indicators for child mortality, I chose underfive mortality because it can influence infant and under-one mortality as well as Millennium Development Goals (MDG)'s indicator. At the same time, survival children will be the next generation for sustainable growth. Therefore, developing countries in South East Asia should try to reduce the children mortality for the future inclusive growth.

1.2. Statement of the Problems/issues

There is need to establish evidence of the effect of mothers' education on underfive mortality in South East Asia's developing countries. Most of developing countries have several challenges and many issues such as lack of infrastructure, lack of knowledge, lack of budget and inefficiency. Moreover, absence of actual statistics, policy maker met the failed planning for growth especially education and health sectors. For inclusive growth, these two sectors are very fundamental sectors. Therefore, filling the gap is beneficial to both their governments and their citizens within region. Since there is general issue on the child mortality, establishing evidence on whether mothers' education will contribute inclusive development efforts in the South East Asia's developing region. If it is established that mothers' education has a negative impact on children mortality, policy makers in region will have to focus their efforts on enhancing investment of education sector. If the evidence proves otherwise they will think to adjust their investment policies in the region.

1.3. Purpose of the Study

This study can support between decision makers and citizens to fulfill citizens' lives indirectly by government policy because child survival is often used broad indicators for social development. Moreover, maternal education is important for health of children to improve of the country's growth. Mothers' routine decisions can influence child health. Therefore, the very research can promote socio-economic status by studying the effect of maternal education on child survival especially under-five mortality which is to be sustainable growth in South East Asia.

1.4. The Objectives of the study

- To monitor the demographic variables in South East Asia developing countries on child mortality in the age of under-five years
- To identify the relative importance of the levels of mothers' education and underfive child mortality
- 3. To encourage female educational levels and mothers' knowledge to possess the qualified children who be the human capital in future growth

1.5. Research questions

- What is the effect of mothers' education on the under-five mortality of developing countries in South East Asia?
- How do we reduce under-five child mortality in these regions?

1.6. Study Hypothesis

The developing countries of South East Asia are expected to be positive by the effect of mothers' education on child mortality and regardless of the prevailing policy distortions in the individual countries within the region. Nevertheless policy and institutional quality is expected to enhance the effect of mothers' education. With this argument and our research questions in mind, a hypothesis is made that *under-five child*

mortality is associated with mothers' educational levels than other factors in South East South East Asia's developing countries.

1.7. Structure of the Paper

This paper is made up of the followings. Chapter 2 will be presented by literature review and chapter 3 will discuss theoretical framework and chapter 4 is the methodology with collecting data, specification of the conceptual models and definitions of the variables used and interpreting. Chapter 5 will add discussion with the findings and reflection. Finally, chapter 6 will include conclusions.

II. LITERATURE REVIEW

2.1. Theoretical Background

Population size and population growth of a country are thought by variables for economic growth and that, a mother's education is essential for child survival. The study of the determinants of child survival plays a vital role on both social and biological variables in developing countries. The mother's quality of care is very important during pregnancy and child birth by nutrients management. The mother is the most important health care provider of her baby. The mother's empowerment can influence a child's health. It is hypothesized that a mother's education is essential for child survival. The following literature reviews support this hypothesis.

2.2. The Impact of Population Size and Population Growth

This research examined the impact of population size and population growth on the quality of the health of mothers and their children. As indicated in a research article by Bash (2015), census has important ramifications for many aspects of society and can be an examined parameter in research involved in demographic analysis of the population. Bash further investigates some limiting factors which avert population growth and examines the differences in the results of the same period using different models. The research design, the study area, data collection methods and instruments, validation of the instruments, limitations and the procedure for data analysis were discussed.

2.3. The Effect of Maternal Education on Child Survival

Lillard, Simon, Ueyama (2007) indicated that a mother's high school education improves a mother's age at child's birth including child care use. They also discovered suggestive evidence of a much more complex set of behaviors that are causally related to maternal education and that likely affect child health.

This preliminary evidence suggests that the very study can strongly conclude the child health by maternal education. The body of empirical evidence showed that not only education can improve health but also that health can affect education.

Researchers in this field have used many methodologies; one of the methods used is the instrument variables. With this methodology, researchers have found that, in developing countries generally, education concerned with better child health. According to the researcher's result, when women get more education, child survival (Breierova and Duflo 2004; Blunch 2005) and children's height-for-age increase (Ahmad and Iqbal 2005). Many researchers generally agree that, the relationship between education and health is a main point input to several continuing public policies in all economy contexts.

2.4. The Relationship between Child Survival and a Mother's Health Based Socioeconomic Status as Variables

Usually, social science research on child mortality has engrossed on the suggestion between socioeconomic status and levels and designs of mortality in populations. Chen and Mosley (1984) proposed the learning of the determinants of child survival on both social and biological variables in developing countries. The purpose of the child survival study is to illuminate our sympathetic of the many factors involved in the family's production of healthy children in order to deliver a foundation for framing health policies and strategies. The strategic to the model is the sympathy of a set of

adjacent determinants, or intermediate variables, that directly impact the risk of morbidity and mortality. Each of the maternal factors has been exposed to use an independent influence on pregnancy results and infant survival through its effects on maternal health. An important inclusion is the performants and the quality of care during pregnancy and childbirth. The significance of this research is correlations between mortality and socioeconomic characteristics for the mortality causes. For example, income and maternal education are two generally measured correlates (and inferred causal determinants) of child mortality in a developing nation population. All social and economic determinants must activate through these variables to affect child death.

2.5. Long Term Effect of Maternal Education on under-five child mortality

Child health is one of the main indicators of development of a country. Hassan (2014) contributed to understanding the long term effect of maternal education on underfive child mortality (U5MR). The relevance of this research stems from the fact that, asset in girls' schooling is still one of the important ways to contribute not only child health development but also growth in the long run. Hassan's paper examined the factors causal child health by investigating the effects of maternal education on the event of under-five mortality. This paper indicated the set of factors related to socio-economic status including the use of health care service area; reproductive behaviors of women; mothers' empowerment; and parental employment status. These were comprised in the regressions with the aim to catch the partial effect of maternal schooling on the incidence of underfive mortality.

Instead, various other variables were tried for their mediation on the outcome of maternal education on under-five mortality. These included maternal characteristics such as family prosperity index, pre-birth interval, types of floor materials, sanitation facilities, drinking water, staying health facilities, modern contraceptive use, antenatal visit, and delivery in health conveniences. The author used the Linear Probability Model (LPM) regressions and the pooled regressions with DHS survey for Ethiopia country which indicated that the mean of the incidence of under-five child mortality decreased significantly in the period of 2000 to 2011. It similarly reduced with increasing levels of maternal education. Likewise, significantly higher mean of years of schooling was attained for surviving mothers' children.

2.6. The Relationship between Maternal Education and Child Survival based Spatial Demographic Analysis

Weeks (2001) suggested for the application of spatial analysis to demographic research as a method to integrate and superior understand the unlike transitional apparatuses of the whole demographic transitions especially the fertility transition in Egypt. The authors argued in the context of a analysis of the still reasonably sparse literature on spatial analysis in demography and then turns to the sorts of data that are required for spatial demographic analysis; the kinds of statistical methods that are accessible to researchers; and the approach in which Geographical Information System (GIS) can support to integrate each of these components for the theories testing and models building. So, demography is not only spatial but also by nature interdisciplinary. The overall transition in population size can occur when mortality drops sooner than fertility (the common pattern in the demographic transition) from which massive variations follow with respect to resource utilization and allocation. This paper hypothesis is how and why these transitions occur.

Many demographic researches, engages spatial "analysis". Research that incorporates spatial information recognizes that demographic behavior will differ by geographic region that population characteristics and change are unlike in urban than in rural places. The spatial analysis application to demographic research is a method of integrating and enhanced understanding of the different transitional components of the overall demographic transition.

Weeks also discussed the kind of data required for spatial demographic analysis, permitting researchers to use the concepts and tools of spatial analysis to test theories increasing out of the general framework. He also summarized the research for an upgraded understanding of the Arab fertility transition through the challenging of explicitly spatial hypotheses about the timing and tempo of fertility change.

Weeks's paper achieves with an example of this type of research, sketch upon the author's study, which is expected at a better understanding of the Arab fertility transition through the testing of explicit spatial theories about the timing and tempo of fertility change. Definitely, this research relates GIS, remote sensing, and the relationship between spatial statistics and the fertility transition in rural and urban Egypt. Additionally as indicated above, the use of spatial analysis to demographic research must be updated by accepting the different transitional components of the whole demographic transitions especially the fertility transition.

III. THEORETICAL FRAMEWORK

3.1. Mosley-Chen's Conceptual Model of Mortality

The model recommends combining social science and medical science research methods in dealing with infant and child mortality factors in developing countries. The following is broadcast mechanism of the model.

Figure 1: Conceptual Framework of Child Mortality [Source: Mosley and Chen (1984)]

3.2. Leroy Almendarez's Human Capital Theory

Leroy Almendarez (2011) purposes Human Capital Theory (HTC) which determines that investment in human capital will hint to great economic outputs but the validity of the theory is sometimes tough to demonstrate and contradictory. At one time, economic strength was mainly depended on real physical assets such as land, factories and equipment. Now a days, Beckr (1993) supports modern economists appear to concur that education and health care are the significant to improving human capital and ultimately growing the economic outputs of the nation. He argues that Human Capital Theory (HCT) is the most persuasive increasing the economic theory of western education, situation the framework of government policies since the early 1960s and it is gradually seen as a key determinant of economic performance. Literature has indicated generally that the more educated mothers are superior for absorbing the benefits of health infrastructure and health knowledge that are universally accessible. Research has also indicated that giant part of maternal education can be replaced by advancing in other factors that can improve socio-economic status, use of health amenities, and health behaviors of women (Weeks, 2001). The extent to which maternal education affects child survival can vary across various sectors of society and within countries and also the direction of causation varies. The purpose of this study is to simplify our understanding of the many factors complicated in the family's manufacture of healthy children in order to afford a foundation for framing education policy and strategies.

Therefore, this study builds on the strengths of the studies like that Uzma Iram (2013) who focused a panel of world developing countries which are middle low income. We attempt to overcome the other studies discussed in the literature review which make general conclusions based on samples that are too broad. We believe the South East Asia's developing region is reasonably homogeneous to be studied together over some time span and make generalized conclusions. We further recognize the need to address the evidence of the effect of mothers' education on under-five child mortality in South East Asia's developing countries as done by Uzma Iram (2013).

IV. METHODOLOGY

4.1. Conceptual Framework

Although both maternal and paternal education are among the socio-economic factors that affect child mortality, mothers' education has been one of the main factors of child health indicators and child mortality in many studies specially. The following diagram (Figure 2) is drawn based on the above discussion and it shows the way mothers' education can affect under-five mortality. It shows its direct effect and indirect effect and employs through other factors.

Figure 2: Conceptual Framework of Child Mortality

Given the nature and characteristic of the problem under investigation in this paper, it is prudent to use linear panel data regression methods to evaluate the effect of mothers' education on under-five child mortality in South East Asia countries. This panel data is a dataset in which the comportment of entities observed across time. These entities could be developing countries in South East Asia for this paper. Panel data permits me to control for variables I cannot see or measure like cultural factors or variables for individual heterogeneity. Furthermore, we can contain variables at different levels of analysis for multilevel modeling in panel data. We can center on two techniques use to analyze panel data such as Fixed Effects (FE) or Random Effect (RE) estimations techniques for Error Component Model. We can use Fixed Effects (FE) whenever we only engrossed for analyzing of the impact of variables that vary over time. Moreover, FE can eliminate the effect of time-invariant characteristics thus we can measure the net effect of the predictors on the outcome variable as well as Fixed Effects (FE) models are considered to study the causes of changes within entity. Random Effect (RE), unlike the fixed effects model, agrees generalizing the inferences beyond the example used in the model. To select between fixed or random effects we can run a Hausman test where the null hypothesis is that the ideal model is Random Effect (RE) and the alternative the Fixed **Effects (FE)**.

4.2. Model Specification

The baseline models specifically investigate the effect of mothers' education on under-five child mortality in South East Asia's developing countries takes the form:

U5MR_{it} = $\beta_0 + \beta_1$ Female (primary) Edu _{it} + \emptyset X _{it} + ε _{it}(1)

U5MR_{it} = $\beta_0 + \beta_1$ Female (secondary) Edu _{it} + \emptyset X _{it} + ε _{it}(2)

U5MR_{it} = $\beta_0 + \beta_1$ Female (tertiary) Edu _{it} + \emptyset X _{it} + ε _{it}(3)

For Overall Regression,

U5MR_{it} = $\beta_0 + \beta_1$ Female (primary) Edu _{it} + β_1 Female (secondary) Edu _{it} + β_1 Female (tertiary) Edu _{it} + \emptyset X _{it} + ε _{it}(4)

Where i=1...N and t=1...N

Under-five Mortality is dependent variable and *independent variables* are School enrollment, tertiary, female (%), School enrollment, secondary, female (%), School enrollment, primary, female (%), Fertility rate, total (births per woman), GDP per capita

(current US\$), Improved water source (% of population with access), Pregnant women receiving prenatal care (%), Births attended by skilled health staff (% of total), Health expenditure, total (% of GDP), Improved sanitation facilities (% of population with access), Immunization, measles (% of children ages 12-23 months). The following definitions are variables for that study.

Main research of this paper is on the *levels of school enrollment female variables*. As indicated in the hypothesis, we expect mothers' education levels to have negative impact on child mortality. The theoretical basis is that female schooling levels can affect the under-five child mortality in South East Asia's developing countries.

S/N	Variable	Definition	Stata
0			Label
1	Under-five Mortality Rate	the probability per 1,000 that a baby will	U5MR
		pass away before reaching age	
2	School enrollment, tertiary, female	The ratio of female , tertiary school	tertiary
		enrollment	
3	School enrollment, secondary,	The ratio of female, secondary school	secondary
	female	enrollment	
4	School enrollment, primary, female	The ratio of female , primary school	primary
		enrollment	
5	Fertility rate, total (births per	The number of children that would be	fertilityR
	woman),	born to a woman between 15 to 49 years	
6	GDP per capita (current US\$)	Gross Domestic Product divided by	gdppc
		midyear population	
7	Improved water source (% of	The percentage of the population using	water
	population with access)	all kinds of drinking water source	
8	Pregnant women receiving prenatal	The women joined at least once during	prenatalCa
	care (%)	pregnancy by skilled health personnel for	re

Table 1: Description of Variables

		aims related to pregnancy.	
9	Births attended by skilled health staff	The percentage of distributions attended	Births hel
	(% of total)	by personnel trained to care for	staff
		newborns.	
10	Health expenditure, total (% of GDP)	The summation of public and private	HealthExp
		health expenditure	
11	Improved sanitation facilities (% of	Using improved sanitation facilities are	sanitation
	population with access)	possible to ensure hygienic separation of	
		human excreta from human contact	
12	Immunization, measles (% of	Children ages 12-23 months who	ImmuMea
	children ages 12-23 months)	received immunizations before 1 year or	ls
		at any time	

4.3. Limitations of the Study and Data Sources

Universally, mortality studies are faced with data limitations, mainly in the developing countries in South East Asia where death is viewed as a sad affair that respondents do not love to recall because it brings back sad memories. The data limitations will stance a severe challenge to this study. The study therefore uses panel data for all sample variables of South East Asia's developing countries from 2000 to 2015, sources from the World Development Indicators (World databank).

4.4. Data Analysis with Panel Data

According to analysis, we can see 14 variables and 272 observations and strongly balanced among panel variables for 17 developing countries in South East Asia from 2000 to 2015 year. Although most of countries' graphs showed negative relationship between under-five child mortality and year, there are still the highest mortality rates in the world.

Graph : Yearly Under-five Mortality (U5MR) Graph by Country from 2000 to 2015

- 1. Afghanistan
- 2. Bangladesh
- 3. Bhutan
- 4. Cambodia
- 5. China
- 6. India
- 7. Indonesia
- 8. Lao PDR
- 9. Mongolia

- 10. Myanmar
- 11. Nepal
- 12. Pakistan
- 13. Philippines
- 14. Sri Lanka
- 15. Vietnam
- 16. Timor-Leste
- 17. Thailand

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Ν	mean	sd	min	max
Fertility Rate	255	3.074	1.363	1.447	7.496
GDP Per Capital	272	1,534	1,422	9.800 119.9	7,925
Improved Water	272	78.40	15.56	30.30	100
Birth with skilled-staff	98 103	73.95 59.54	25.62 31.45	10.10 11.60	99.30 99.90
Health Expenditures	253	4.286	1.753	0.368	9.419
Sanitation	272	54.37 80.65	20.05	16.30 27	95.10
Tertiary Female	233 175	20.17	18.10	0.536	75.92
Secondary Female	178	56.23	22.99	0	102.0
Primary Female	218	101.9	18.31	0	151.3

Table 2: Summary Statistics for Analysis

First and foremost, my paper used the summary statistics for knowing minimum and maximum levels for variables as shown in figure.

4.4.1. Modeling under-five mortality rate on the female, *primary* school enrollment with

Fixed Effects: Hausman Test

Having decided to conduct panel estimation, we look another decision of whether to estimate our model with random effects (RE) or fixed effects (FE). The general approach to determining a more appropriate model between a fixed effects model and a random effects model is to conduct the Hausman Test. We therefore conduct the Hausman test for the female, primary school enrollment – under-five mortality rate model as shown in table 3 below. For Hausman test, null hypothesis that RE is appropriate and alternative hypothesis is FE is appropriate. The test generates a small Chi-square test statistic at 20.02 and a large p-value at 0.0103. We therefore reject the null hypothesis that the difference in the coefficients generated by our model is systematic and accept the alternative. We therefore proceed to estimate a fixed effects model for the female, primary school enrollment – under-five mortality rate regression.

Table 3: Results of the Hausman test for the female, primary school enrollment – under-five

. hausman fixe	ed random						
	Coeffi	cients ——					
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))			
	fixed	random	Difference	S.E.			
primary	3198135	2908383	0289752	.0712172			
fertilityr	-3.388727	5782835	-2.810444	2.990412			
water	-1.200191	4254436	7747479	.3407239			
prenatalcare	1037497	0772619	0264878	.0582428			
birthshels~f	2142654	2807879	.0665225	.0632162			
healthexp	.7869377	331209	1.118147	.5661843			
sanitation	05376	2965823	.2428222	.2370414			
immumeals	1321688	5133551	.3811863	.1177738			
b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg							
Test: Ho:	Test: Ho: difference in coefficients not systematic						
	chi2(8) = $(b-B)'[(V_b-V_B)^{(-1)}](b-B)$ = 20.02						
Prob>chi2 = 0.0103 (V b-V B is not positive definite)							

Mortality rate regression

4.4.2. Results of the regressions for the female, primary school enrollment – under-five mortality rate

As stated in our hypothesis, we expect the female, *primary* school enrollment to effect on the under-five mortality rate by decreasing child mortality. Therefore we expect a negative relationship between for the female, primary school enrollment – under-five mortality rate. In Table 4 below, we will discuss the results which are estimated by regressing of under-five mortality on mothers' education levels and some control variables with pooled OLS and Fixed Effect (FE). Moreover, our interest is to see the changes in the magnitude and significance of the coefficient for variables. Then, we can claim the changes.

	(1)	(2)
VARIABLES	OLS	FE
Primary Female	-0.476***	-0.315***
	(0.0854)	(0.117)
GDP Per Capital	-0.000999	-0.00103
	(0.000957)	(0.000859)
Fertility Rate	3.109	-1.870
	(1.908)	(4.067)
Improved Water	-0.171	-1.188***
	(0.104)	(0.379)
Prenatal Care	-0.119	-0.128
	(0.136)	(0.140)
Birth- skilled-staff	-0.198	-0.220
	(0.130)	(0.145)
Health Expenditures	-0.558	1.219
	(0.865)	(1.071)
Sanitation	-0.302***	0.0764
	(0.0982)	(0.291)
Immunization meals	-0.617***	-0.0475
	(0.133)	(0.196)
Constant	198.9***	204.2***
	(18.63)	(29.72)
Observations	74	74
R-squared	0.941	0.891

Table 4: Results of the regressions for the female, *primary* school enrollment – under-five mortality rate

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

In pooled OLS, a child from a mother with primary level of education is 0.476 percentage points less likely to die under the age of five. Then, a child from good sanitation facilities is 0.302 percentage points less likely to die under the age of five. Moreover, a child from getting immunization meals is 0.617 percentage points less likely to die under the age of five. The statistical significance levels of these are lower than 99%.

According to FE regression results, under-five mortality rate changes or increases 0.315 percentages, when the female primary school level decreases by one unit. When the improved

water source decreases by one unit, under-five mortality rate will change or increases 1.188 percentages.

The findings also indicate a strong effective and negative relationship between under-five mortality rate and them in these seventeen countries. This is also well expected and in line with theory. Moreover, our model is very good fit because the variables have significant influences on under-five mortality when the statistical significance levels of these are lower than 99%. We are happy about this model. I have no doubt about the result.

We can therefore conclude that indeed female primary school enrollment by increasing has helped in decreasing under-five mortality rate in these seventeen developing countries in South East Asia and to this effect female primary school enrollment has been very effective especially by model-1.

4.4.3. Modeling under-five mortality rate on the female, secondary school enrollment with Fixed Effects: Hausman Test

For Table 5 Hausman test, null hypothesis that RE is appropriate and alternative hypothesis is FE is appropriate. The test generates a small Chi-square test statistic at 24.29 and a large p-value at 0.0020. We therefore reject the null hypothesis that the difference in the coefficients generated by our model is systematic and accept the alternative. We therefore proceed to estimate a fixed effects model for the female, *secondary* school enrollment – under-five mortality rate regression.

Table 5: Results of the Hausman test for the female, secondary school enrollment – under-five mortality rate

regression

. hausman fixe	ed random						
	Coeffi	cients ——					
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))			
	fixed	random	Difference	S.E.			
secondary	0456639	2619816	.2163177	.0782608			
fertilityr	1.507933	.7915469	.7163861	3.264376			
water	7622521	4385035	3237486	.7115231			
prenatalcare	.0450099	0575156	.1025254	.0910523			
birthshels~f	1805794	1328091	0477704	.1084893			
healthexp	-1.461959	7506087	7113506	.7130524			
sanitation	907188	4654804	4417076	.3582411			
immumeals	1584245	3820334	.2236089	.1468217			
	b = consistent under Ho and Ha; obtained from xtreg						
В	= inconsistent	under Ha, eff	icient under Ho,	; obtained from xtreg			
Test: Ho: difference in coefficients not systematic							
	chi2(8) = (b-B)'[(V_b-V_B)^(-1)](b-B)						
	=	24.29					
	Prob>chi2 =	0.0020					
	(V b-V B is	not positive d	lefinite)				
secondary fertilityr water prenatalcare birthshels~f healthexp sanitation immumeals B Test: Ho	0456639 1.507933 7622521 .0450099 1805794 -1.461959 907188 1584245 b = inconsistent : difference i chi2(8) = = Prob>chi2 = (V b-V B is	2619816 .7915469 4385035 0575156 1328091 7506087 4654804 3820334 = consistent under Ha, eff n coefficients (b-B)'[(V_b-V_ 24.29 0.0020 not positive d	.2163177 .7163861 3237486 .1025254 0477704 7113506 4417076 .2236089 under Ho and Ha, ficient under Ho, a not systematic B)^(-1)](b-B)	.0782608 3.264376 .7115231 .0910523 .1084893 .7130524 .3582411 .1468217 ; obtained from xtreg ; obtained from xtreg			

4.4.4. Results of the regressions for the female, secondary school enrollment – under-

five mortality rate regression

As stated in our hypothesis, we expect the female, *secondary* school enrollment to effect on the under-five mortality rate by decreasing child mortality. Therefore we expect a negative relationship between for the female, *secondary* school enrollment – under-five mortality rate. The results for that are shown in Table 6 below. Moreover, our interest is to see the changes in the magnitude and significance of the coefficient for variables. Then, we can claim the changes. As expected, our findings indicate a negative impact of *secondary* school enrollment for female on under-five child mortality in developing countries in SOUTH EAST ASIA.

	(1)	(2)
VARIABLES	OLS	FE
Secondary Female	-0.542***	-0.0170
	(0.129)	(0.169)
GDP Per Capital	-0.00104	-0.000208
	(0.00134)	(0.00151)
Fertility Rate	4.096*	2.194
	(2.154)	(5.680)
Improved Water	-0.341**	-0.807
	(0.133)	(0.781)
Prenatal Care	0.0506	0.0770
	(0.177)	(0.175)
Birth- skilled-staff	-0.124	-0.193
	(0.151)	(0.189)
Health Expenditures	-0.419	-1.449
	(1.070)	(1.399)
Sanitation	-0.0558	-0.901**
	(0.122)	(0.415)
Immunization meals	-0.414**	-0.169
	(0.169)	(0.234)
Constant	146.3***	187.6***
	(17.21)	(54.76)
Observations	65	65
R-squared	0.932	0.875

 Table 6: Results of regressions for the female, secondary school enrollment –under-five mortality

 rate regression

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

In pooled OLS, when mother with *secondary* level of education increases by one unit, under-five mortality rate decreases 0.542 percentages. The statistical significance level of that is lower than 99%. Then, a child from improved water facilities is 0.341 percentages points less likely to die under the age of five. Moreover, a child from getting immunization meals is 0.414 percentages points less likely to die under the age of five. The statistical significance levels of these are lower than 95%.

According to FE regression results, under-five mortality rate changes or increases 0.017 percentages, when coefficient of the female primary school level decreases by one unit. When of the sanitation facilities decrease by one unit, under-five mortality rate will change or increases 0.901 percentages. The statistical significance level of that is lower than 95%.

The findings also indicate a strong effective and negative relationship between under-five mortality rate and them in these seventeen countries. This is also well expected and in line with theory. Moreover, our model is very good fit when probability value is significant. We are happy about this model. I also have no doubt about the result.

We can therefore conclude that indeed female *secondary* school enrollment by increasing has helped in decreasing under-five mortality rate in these seventeen developing countries in South East Asia and to this effect female *secondary* school enrollment has been very effective especially by model-2.

4.4.5. Modeling under-five mortality rate on the female, tertiary school enrollment with Fixed Effects: Hausman Test

To determining a more appropriate model between a fixed effects model and a random effects model by conducting Table 7 the Hausman Test, null hypothesis that RE is appropriate and alternative hypothesis is FE is appropriate. The test generates a small Chi-square test statistic at 4.15 and a large p-value at 0.8434. We fail to reject the null hypothesis that the difference in the coefficients generated by our model is not systematic. We therefore use to estimate a Random effects model for the female, *tertiary* school enrollment – under-five mortality rate regression.

Table 7: Results of the Hausman test for the female, ter	<i>iary</i> school enrollment – under-five mortality ra	ate
--	---	-----

Regression

. hausman fixe	ed random			
	——— Coeffi	cients ——		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fixed	random	Difference	S.E.
tertiary	6886475	5241703	1644772	.1376923
fertilityr	9.499454	5.462412	4.037042	3.275602
water	1417429	3153666	.1736236	.4519853
prenatalcare	2707565	3596471	.0888907	.1007853
birthshels~f	.0257424	.0464016	0206592	.1087059
healthexp	1.047483	.1791319	.8683512	.5885603
sanitation	1329261	04933	0835961	.2540522
immumeals	3373533	4157821	.0784288	.0979278
	b	= consistent	under Ho and Ha	; obtained from xtreg
В	= inconsistent	under Ha, eff	icient under Ho	; obtained from xtreg
Test: Ho:	difference i	n coefficients	not systematic	
	chi2(8) =	(b-B)'[(V b-V	B)^(-1)](b-B)	
	=	4.15	-	
	Prob>chi2 =	0.8434		

4.4.6. Results of the regressions for the female, tertiary school enrollment – under-five mortality rate regression

As stated in our hypothesis, we expect the female, *tertiary* school enrollment to effect on the under-five mortality rate by decreasing child mortality. Therefore, we expect a negative relationship between for the female, *tertiary* school enrollment – under-five mortality rate. The results for the female, *tertiary* school enrollment and under-five mortality rate regression are shown in Table 8 below. Moreover, our interest is to see the changes in the magnitude and significance of the coefficient for variables. Then, we can claim the changes. As expected, our findings indicate a negative impact of *tertiary* school enrollment for female on under-five child mortality in developing countries in South East Asia.

	(1)	(2)
VARIABLES	OLS	RE
Tertiary Female	0.114	-0.534***
	(0.136)	(0.187)
GDP Per Capital	-0.00248**	0.000185
	(0.00122)	(0.00101)
Fertility Rate	5.055**	5.678**
	(2.055)	(2.730)
Improved Water	0.0444	-0.270
	(0.156)	(0.251)
Prenatal Care	-0.493***	-0.352***
	(0.163)	(0.124)
Birth- skilled-staff	0.0751	0.0588
	(0.144)	(0.156)
Health Expenditures	-1.011	0.328
	(1.163)	(1.045)
Sanitation	-0.311**	-0.117
	(0.153)	(0.226)
Immunization meals	-0.698***	-0.420***
	(0.162)	(0.147)
Constant	147.5***	129.9***
	(17.76)	(23.31)
Observations	69	69
R-squared	0.905	
Standard	l errors in parent	heses

Table 8: Results of the regressions for the female, *tertiary* school enrollment –under-five mortality rate

*** p<0.01, ** p<0.05, * p<0.1

According to pooled OLS, when GDP per capital increases by one unit, under-five mortality rate decreases 0.0025 percentages. Then, a child from fertility rate is 5.055 percentages points more likely to survive under the age of five. The statistical significance levels of these are lower than 95%. A child from getting immunization meals and prenatal care are 0.698 percentages and 0.493 percentages points less likely to die under the age of five. The statistical significance levels of these are lower than 99%. Moreover, when sanitation facilities increase by one unit, under-five mortality rate decreases 0.311 percentages. The statistical significance level of that is lower than 95%.

In RE regression results, under-five mortality rate changes or increases 0.534 percentages, when coefficient of the female *tertiary* school level decreases by one unit. Then, a child from fertility rate is 5.678 percentages points more likely to survive under the age of five. The statistical significance levels of these are lower than 95%. A child from getting immunization meals and prenatal care are 0.420 percentages and 0.352 percentages points less likely to die under the age of five. The statistical significance levels of these are lower than 99%. Moreover, when sanitation facilities increase by one unit, under-five mortality rate decreases 0.117 percentages. The statistical significance level of that is lower than 95%.

The findings also indicate a strong effective and negative relationship between under-five mortality rate and these variables in these seventeen countries except the fertility rate. This is also well expected and in line with theory. Moreover, our model is very good fit when probability values are significant. We are happy about this model and no doubt about the result.

We can therefore conclude that indeed female *tertiary* school enrollment by increasing has helped in decreasing under-five mortality rate in these seventeen developing countries in South East Asia and to this effect female *tertiary* school enrollment has been very effective especially by model-3.

4.4.7. Findings of the overall female school enrollment regression model

 Table 9: Results of the regressions for the female school enrollment for all levels on under-five

 mortality rate

VARIABLES	UNDER FIVE MORTALITY
Primary Female	-0.369***
	(0.130)
Secondary Female	-0.491***
-	(0.168)
Tertiary Female	0.106
-	(0.143)
GDP Per Capital	-0.00105
-	(0.00134)
Fertility Rate	2.526
	(2.401)
Improved Water	-0.306*
-	(0.161)
Prenatal Care	0.110
	(0.213)
Birth- skilled-staff	-0.228
	(0.177)
Health Expenditures	0.0385
-	(1.274)
Sanitation	-0.186
	(0.148)
Immunization meals	-0.359*
	(0.182)
Constant	183.9***
	(23.47)
Observations	50
R-squared	0.948
Standard arrors in n	aranthagag

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

According to the above overall regression results, under-five mortality rate changes or increases 0.4 percentages and 0.5 percentages, when coefficient of the female *primary* and *secondary* school level decreases by one unit. The statistical significance levels of these are lower than 99%. A child from getting immunization meals and improved water are 0.4 percentages and 0.3 percentages points less likely to die under the age of five. The statistical significance levels of

these are lower than 90%. The findings also indicate a strong effective and negative relationship between under-five mortality rate and these variables in these seventeen countries except the female *tertiary* school level. Therefore, we can conclude that indeed female *tertiary* school enrollment by increasing has helped in decreasing under-five mortality rate in these seventeen developing countries in South East Asia and to this effect female *tertiary* school enrollment has been very effective especially by model-4.

V. DISCUSSION

Hence above chapters present the deliveries of the study sample by designated demographic, socio-economic and community related characteristics which could either directly and/or indirectly affect under-five child mortality. The demographic and socio-economic characteristics especially mothers' educational levels can affect child mortality where children are born and upraised are vital and necessary to be lectured first before embarking on the study of any component of population change (be it fertility, mortality). The study population will improve good and clear sympathetic of the findings.

According to the reflection from my supervisors and research project evaluation result, they evaluated my thesis that the study explores critical topic in developing countries, that is, a relationship between mother's education and it impact on mortality rate. Mobilizing empirical data, the thesis investigate a magnitude of mother's education, as an independent variable, on the mortality and finds out positive relations between the two variables, which leads to a conclusion of 'mother is school'. Overall, the study is well organized and informative for future studies.

Finally, we accept this hypothesis due to panel data analysis that under-five child mortality is associated with mothers' educational levels than other factors in South East Asia's developing countries.

29

VI. CONCLUSION

This study measures effects of mothers' education on under-five children mortality from developing countries in South East Asia. In order to prove the hypothesis, this study applied statistical analysis such as Hausman test with panel data and pooled OLS regressions by using three models. The results of my study discovered that the effects are all statistically significant.

My study confirmed a strong association between mother's education and under-five child mortality and remained significant after control for other factors. The findings of this paper supported for an independent effect of mother education levels (primary, secondary and tertiary) operating through increase health knowledge such as improved water source, sanitation facilities, immunization and etc. for under-five child mortality rate.

Therefore, the findings of this research agree that "Mother is school". Most of developing countries in South East Asia show higher under-five mortality rate by low-level female education. This study can realize mothers' educational levels can appear to possess a stronger effect on the under-five child mortality rate than other factors.

This also can prove the effect of mothers' education on the under-five mortality developing countries in South East Asia. That is why; we can reduce under-five child mortality by improving the performance of female education in these regions. Countries with higher level of education can create the inclusive growth.

VII. BIBLIOGRAPHY

- Adedini, S. A. (2013). Contextual Determinants of Infant and child Mortality in Nigeria, (September).
- Ahmad, M. H., Atiq, Z., Alam, S., & Butt, M. S. (2006). The Impact of Demography, Growth and Public Policy on Household Saving: South East Asia-Pacific Development Journal, 13(2), 57–71.
- Anglia, E. (2013). The Determinants of Child Mortality: Empirical Findings from Developing Countries Uzma Iram, (September).
- Chawla, M., Kawiorska, D., & Chellaraj, G. (1998). The Impact of Economic and Demographic Factors on Government Health Expenditures in Poland. *International Health System*
 Retrieved from http://www.hsph.harvard.edu/ihsg/graphics/headers/publications/pdf/No-72.pdf
- Country, T., Report, D., Indicators, W. G., Wgi, T., Stability, P., Effectiveness, G., ... Wgi, T. (2014). Country Data Report for Myanmar, 1996-2014.
- Diener, E. D., & Suh, E. (1997). Measuring quality of life: economic, social, and subjective indicators. *Social Indicators ReSouth East Asiarch*, 40(1/2), 189–216. Retrieved from http://doi.org/10.1023/A:1006859511756
- Fuchs, R., Lutz, W., & Pamuk, E. (2009). The influence of maternal education on child health and mortality. Income or education - what matters most ? *Vid*.

Gauthier, A. H. (2001). the Impact of Public Policies on Families and Demographic Behaviour,

(August), 1-45.

- Hassen, K. Y. (2014). The Effect of Maternal Education on Under-five Mortality in Ethiopia, (December).
- Hirschman, C. (1981). THE USES OF DEMOGRAPHY IN DEVELOPMENT PLANNING The Uses of Demography in Development Planning *, 29(3).
- Kahn, K., Tollman, S. M., Collinson, M. a, Clark, S. J., Twine, R., Clark, B. D., ... Garenne, M. L. (2007). Researchinto health, population and social transitions in rural South Africa: data and methods of the Agincourt Health and Demographic Surveillance System. *Scandinavian Journal of Public Health. Supplement*, 69(Suppl 69), 8–20. Retrieved from http://doi.org/10.1080/14034950701505031
- Lillard, D. R., Simon, K., & Ueyama, M. (2007). The Effect of Maternal Education on Child Health, 37.
- Mosley, W. H., & Chen, L. C. (1984). An analytical framework for the study of child survival in developing countries. *Popul Dev Rev*, 10(Suppl), 25–45. Retrieved from http://doi.org/10.2307/2807954
- Mosley, W. H., Chen, L. C., & Hill, K. (2003). Public Health Classics on their proposal for a new analytical framework for the study of child survival determinants in developing countries
 Frameworks for studying the determinants of child survival. *Bulletin of the World Health Organization*, *81*(2), 138–139. Retrieved from
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572395/pdf/12751422.pdf
- Noll, H. (2002). Social Indicators and Quality of Life ReSouth East Asiarch: Background,
 Achievements and Current Trends. *Advances in Sociological Knowledge over Half a ...*, 1–
 36. Retrieved from http://doi.org/10.2307/2224734

- Oscar, T. (2010). Panel data analysis fixed and random effects using Stata. *Data and Statistical Services*, 3(December), 1–40.
- Person, K. (2011). A Descriptive Analysis of Demographic Characteristics and Their Influence on Student Attendance at Programming Board Events by.
- Verlag, C., & Jentzsch-cuvillier, I. A. (n.d.). Edward Nketiah-Amponsah (Autor) Economic Analysis of under-five Morbidity , Mortality and Health-seeking Behaviour – Evidence from Ghana, 49(0).
- Weeks, J. R. (2004). The Role of Spatial Analysis in Demographic ReSouth East Asiarch. Spatially Integrated Social Science: Examples in Best Practice, 4493(August), 381–399.
- WHO, UNICEF, UNFPA, W. B. G., & Division, and the U. N. P. (2015). Trends in maternal mortality 1990 to 2015. Retrieved from http://datatopics.worldbank.org/hnp/files/Trends in Maternal Mortality 1990 to 2015 full report.PDF

VIII. APPENDICES

	**	H 1117 0		•				TT 1/1	• •	-	•••	-	•
Country	Year	Ieruntyk	NINCO	gdppc	water	prenatal		Health	sanitation	Immu	tertiary	secondary	primary
		,	10,			Care	hel statt	Exp		Meals			
Afghanistan	2000	7.496	137		30.3	36.9	12.4		23.4	27			0
Afghanistan	2001	7.395	133.8	119.899	32				23.9	37		0	0
Afghanistan	2002	7.273	130.3	192.1535	33.8			7.763073	24.5	35			45.57453
Afghanistan	2003	7.137	126.8	203.651	35.5	16.1	14.3	8.816053	25.1	39	0.5382	6.76975	71.03409
Afghanistan	2004	6.987	123.2	224.9147	37.3			8.786707	25.7	48	0.53641	6.30301	66.69146
Afghanistan	2005	6.822	119.6	257.1758	39.1			8.068104	26.3	50		9.56232	76.47606
Afghanistan	2006	6.639	116.3	280.2456	40.8	30.3	18.9	7.433972	26.9	53		15.71563	82.60361
Afghanistan	2007	6.437	113.2	380.401	42.6			6.728316	27.4	55		16.18886	79.45343
Afghanistan	2008	6.218	110.4	384.1317	44.4	36	24	8.328093	28	59		23.7574	82.68323
Afghanistan	2009	5.985	107.6	458.9558	46.2			9.418971	28.7	60	1.45779	30.12234	81.02899
Afghanistan	2010	5.746	105	569.9407	48	59.6	34.3	9.197723	29.3	62		35.14346	85.33931
Afghanistan	2011	5.506	102.3	622.3797	49.8	47.9	38.6	7.871992	29.9	64	1.89233	38.7774	85.52632
Afghanistan	2012	5.272	99.5	690.8426	51.6			8.518913	30.5	59		40.42813	91.16672
Afghanistan	2013	5.05	96.7	653.3475	53.4			8.134866	31.1	60		40.20533	90.75572
Afghanistan	2014	4.843	93.9	633.9479	55.2			8.182274	31.8	66		39.6748	91.75787
Afghanistan	2015		91.1	590.2695	55.3				31.9				
Bangladesh	2000	3.169	88	406.5317	76	33.3	11.6	2.326795	45.4	74	3.57004	48.80948	
Bangladesh	2001	3.069	83.5	403.5945	76.7	39.8	11.6	2.469951	46.5	77	4.41835	51.33613	
Bangladesh	2002	2.971	79	401.7082	77.5			2.592887	47.6	75	3.98937	52.96965	
Bangladesh	2003	2.874	74.8	434.0466	78.3	39.7	13.9	2.510038	48.6	76	4.02476	52.72315	
Bangladesh	2004	2.779	70.7	462.2749	79.1	48.7	12.8	2.615486	49.7	81	3.65759	47.45389	
Bangladesh	2005	2.687	66.8	485.8529	79.8			2.67725	50.7	88	4.24799	46.99836	100.9484
Bangladesh	2006	2.6	63	495.8538	80.6	47.7	20.1	2.79623	51.8	83	5.0531	47.39469	102.2043

Appendix : RESEARCH DATA

ıtry	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	sanitation	Immu Meals	tertiary	secondary	primary
sh	2007	2.521	59.4	543.0823	81.3	51.7	18	2.798956	52.8	89	5.44163	48.11158	102.1557
esh	2008	2.449	55.9	618.0759	82			2.846534	53.8	92	6.11068	47.58797	99.53462
esh	2009	2.387	52.6	683.6144	82.7		24.4	2.909584	54.8	93	7.86052	50.41087	102.1762
esh	2010	2.332	49.6	760.3319	83.5	52.8	26.5	3.06356	55.8	88		53.08455	105.8599
lesh	2011	2.286	46.7	838.5478	84.2	54.6	27.8	3.155874	56.8	89	10.8558	54.53006	115.1374
lesh	2012	2.245	44	858.9334	84.8			3.081208	57.7	89	11.2082	57.04295	
esh	2013	2.209	41.6	954.3964	85.5	52.5	34.4	2.882857	58.7	89		60.65054	
lesh	2014	2.175	39.5	1086.8	86.2	63.9	42.1	2.818999	59.6	89			
lesh	2015		37.6	1211.702	86.9				60.6				
	2000	3.604	79.6	778.3913	83.9	51	23.7	6.912317	31	78		26.93281	72.95403
	2001	3.417	75	820.2029	85.3			5.91345	32.5	78		30.44153	77.01012
	2002	3.247	70.6	897.4453	86.6			7.751605	34.1	78			80.75151
	2003	3.095	66.4	1009.006	87.9	71.8	56.1	4.904105	35.7	88			85.37778
	2004	2.962	62.3	1107.921	89.1			4.407502	37.4	87			90.40295
	2005	2.844	58.5	1257.549	90.4			5.280923	39	93	3.72243	42.98261	93.37354
	2006	2.738	54.8	1346.086	91.5			5.268688	40.5	06	3.70851	46.52425	97.02619
	2007	2.636	51.3	1755.162	92.7	88	71.4	5.878661	42.1	95	3.82923	51.12082	100.1271
	2008	2.534	48.1	1810.576	93.8			6.579824	43.6	66	4.70295	54.99091	103.6627
	2009	2.431	45.1	1786.811	94.9			6.027842	45.2	94	4.73191	61.78718	107.8512
	2010	2.331	42.3	2201.293	96	97.3	64.5	5.171762	46.8	95	5.28042	66.65628	110.6825
	2011	2.236	39.9	2485.787	76			4.731458	48.3	95	7.08169	71.01908	111.9407
	2012	2.152	37.8	2452.152	98	97.9	74.6	3.703846	49.4	95	7.67794	75.77341	111.8846
	2013	2.082	36	2383.045	99.1			3.825795	49.7	94	9.23651	79.90201	105.4283
	2014	2.027	34.4	2560.522	100			3.573015	50.1	76		87.05633	102.8738
	2015		32.9	2532.454	100				50.4				

Country	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	sanitation	Immu Meals	tertiary	secondary	primary
Cambodia	2000	3.805	108.3	299.5622	41.6	37.7	31.8	5.865258	16.3	65	1.21238	12.11906	99.40377
Cambodia	2001	3.654	98.7	319.6925	43.9			5.702293	18	59	1.2747	13.60019	108.916
Cambodia	2002	3.521	88.3	337.8043	46.1			5.94574	19.8	52	1.4137	17.13559	122.2561
Cambodia	2003	3.406	78.8	361.0703	48.4			6.742846	21.5	65		21.39918	124.8123
Cambodia	2004	3.309	71.3	407.0849	50.6			6.432183	23.2	80	1.74635	25.62955	125.9098
Cambodia	2005	3.227	65.4	472.4489	52.9	69.3	43.8	5.84122	24.9	79	2.11774		125.5513
Cambodia	2006	3.155	60.4	537.8486	55.1			4.479353	26.6	78	3.58944	34.9946	123.9007
Cambodia	2007	3.086	55.8	629.2829	57.4			3.745832	28.4	79	4.78823	38.36982	122.888
Cambodia	2008	3.018	51.5	742.9429	59.7			5.554349	30.1	89	6.15725	41.44336	119.2784
Cambodia	2009	2.947	47.3	735.4075	61.9			6.355169	31.9	92	8.41129		118.6261
Cambodia	2010	2.875	43.1	782.6928	64.2	89.1	71	5.952805	33.6	93	10.4775		119.75
Cambodia	2011	2.804	39.3	879.1512	66.5		71.7	5.641428	35.4	93	12.08722		117.4241
Cambodia	2012	2.739	35.8	946.4767	68.8		74	6.239208	37.2	93			117.0633
Cambodia	2013	2.683	32.9	1024.609	71.1			5.932818	39	90			117.1501
Cambodia	2014	2.635	30.6	1094.577	73.4	95.3	89	5.675639	40.8	94			113.1353
Cambodia	2015		28.7	1158.69	75.5				42.4				
China	2000	1.447	36.9	954.5523	80.3	89.4	96.6	4.59691	58.8	84			
China	2001	1.455	34.3	1047.478	81.6	90.3	97.3	4.557823	60	85		58.96936	92.23757
China	2002	1.469	31.6	1141.758	82.8	90.1	96.7	4.785073	61.2	85			94.57667
China	2003	1.486	28.9	1280.603	84	88.9	95.9	4.821233	62.4	85	14.10598	60.66989	97.37257
China	2004	1.502	26.3	1498.174	85.2	89.7	97.3	4.722844	63.7	86	16.79303		
China	2005	1.513	24	1740.097	86.3	89.8	97.5	4.65847	64.9	86	18.34594		
China	2006	1.521	21.9	2082.183	87.4	89.7	97.8	4.522417	66.1	93	19.94254	68.39191	104.3278
China	2007	1.526	20.1	2673.294	88.5	90.9	98.4	4.318333	67.2	94	20.68156	72.78547	108.7398
China	2008	1.531	18.5	3441.221	89.5	91	99.1	4.589052	68.4	97	21.21465	77.36051	112.1696

primary	113.085	111.5726	110.0045	109.5272	108.6673			86.25984	86.69485	88.26806	101.4804				109.1898	111.4441	110.9087	110.3551	110.0277	111.7257	116.9858			107.205	108.4707
secondary	81.7708	84.78526	89.15199	92.53189	97.14311			37.09803	37.53514	40.01896	44.2103	45.84784	48.72946	49.96674	53.04429	56.75281	57.27074	60.85323	64.41568	67.373	69.23034			54.19461	55.03672
tertiary	23.07051	24.82943	26.10154	28.74701	32.21901			7.50087	7.82897	8.31584	8.54093	8.73456	8.80486	9.59004	10.74616		13.20456	14.96807	19.98393		23.06391			13.98206	12.31917
Immu Meals	66	66	66	66	66	66		56	57	56	60	64	68	69	70	72	78	82	84	83	83	83		92	76
sanitation	69.6	70.8	71.9	73.1	74.2	75.4	76.5	25.6	26.6	27.6	28.6	29.6	30.6	31.6	32.6	33.6	34.6	35.5	36.5	37.5	38.5	39.5	39.6	47.1	48.1
Health Exp	5.075355	4.88634	5.028864	5.264515	5.385704	5.548228		4.263756	4.49651	4.401073	4.296538	4.22014	4.282175	4.246681	4.226531	4.339492	4.375737	4.27968	4.331151	4.389042	4.529118	4.685088		1.978332	2.231982
Births hel staff	99.3	9.66	99.7	99.8	9.66			42.5						45.5		52.3								6.9	
prenatal Care	92.2	94.1	93.7	95	95.6			61.8						74.2		75.2								88.3	
water	90.5	91.4	92.3	93.2	94	94.8	95.5	80.6	81.5	82.5	83.5	84.5	85.5	86.5	87.4	88.4	89.4	90.3	91.3	92.2	93.1	94.1	94.1	<i>9.17</i>	78.6
gdppc	3800.475	4514.941	5574.187	6264.644	6991.854	7587.29	7924.654	452.4136	460.8262	480.6214	557.8974	640.6005	729.0007	816.7338	1050.025	1022.578	1124.519	1387.88	1455.667	1444.267	1456.202	1576.818	1581.589	780.0921	748.1847
USMR	17	15.7	14.5	13.4	12.3	11.4	10.7	91.2	87.7	84.3	81	77.7	74.6	71.5	68.5	65.6	62.7	59.9	57.2	54.5	52.1	49.8	47.7	52.3	49.8
fertilityR	1.535	1.539	1.544	1.549	1.555	1.562		3.311	3.243	3.174	3.105	3.036	2.966	2.896	2.826	2.755	2.687	2.622	2.563	2.51	2.465	2.427		2.483	2.473
Year	2009	2010	2011	2012	2013	2014	2015	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2000	2001
Country	China	India	Indonesia	Indonesia																					

Country	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	sanitation	Immu Meals	tertiary	secondary	primary
Indonesia	2002	2.469	47.6	900.1308	79.3		68.4	2.268626	49.2	72	13.76227	56.82101	108.6857
Indonesia	2003	2.471	45.4	1065.657	80	91.5	66.3	2.533724	50.2	74	14.21377	59.75026	108.48
Indonesia	2004	2.475	49.3	1150.349	80.6		71.5	2.367748	51.2	76	14.68092	61.60537	108.0405
Indonesia	2005	2.481	41.4	1263.481	81.3	88.6		2.789581	52.1	17		59.81576	106.0898
Indonesia	2006	2.489	39.6	1590.178	81.9	90.38		2.905148	53.1	62	16.46396	62.84428	104.3959
Indonesia	2007	2.497	37.9	1860.623	82.6	93.3	73	3.098442	54.1	76	17.66953	70.76925	107.0185
Indonesia	2008	2.504	36.2	2167.858	83.2	92.65	74.86	2.805945	55.1	76	19.72049	69.4367	106.5083
Indonesia	2009	2.51	34.7	2262.721	83.8	94.51		2.825459	56	74	22.38878	74.47581	106.9561
Indonesia	2010	2.513	33.1	3125.22	84.5	92.7	82.2	2.740675	57	78	22.55804	76.78783	110.5284
Indonesia	2011	2.509	31.7	3647.627	85.1			2.713164	57.9	80	24.35317	79.42174	110.7131
Indonesia	2012	2.5	30.4	3700.524	85.7	95.7	83.1	2.89787	58.8	85	31.19228	81.50885	108.6116
Indonesia	2013	2.484	29.3	3631.673	86.2	95.4		2.925917	59.7	84	32.9013	81.21087	106.2349
Indonesia	2014	2.463	28.2	3499.589	86.8			2.84686	60.6	LL			
Indonesia	2015		27.2	3346.487	87.4				60.8				
Lao PDR	2000	4.304	117.7	324.0197	45.5		19.4	3.411828	28	42	1.8421	28.13917	97.96541
Lao PDR	2001	4.132	113.4	326.0307	47.8	26.5	19.4	4.318787	31.1	50	2.28836	29.97322	96.07789
Lao PDR	2002	3.984	109.2	319.5325	50.1			4.040677	34.2	55	2.9886	32.53208	97.57533
Lao PDR	2003	3.857	105.1	362.6677	52.3			4.911185	37.3	42	3.55876	35.14202	99.84408
Lao PDR	2004	3.75	101.1	418.1733	54.6			4.544448	40.3	36	4.39389	36.92988	101.8905
Lao PDR	2005	3.66	97.2	476.1624	56.8	28.7	14.6	4.316684	43.4	41	6.46397	37.42932	104.1127
Lao PDR	2006	3.582	93.5	591.3648	59	35.1	20.3	4.143343	46.5	48	7.24031	37.168	106.4652
Lao PDR	2007	3.511	89.8	710.9803	61.2			4.144392	49.6	40	9.60814	37.70815	108.5663
Lao PDR	2008	3.44	86.2	900.4996	63.3			2.769966	52.6	52	11.5366	38.67725	111.8304
Lao PDR	2009	3.368	82.8	947.9555	65.4			3.770606	55.7	59	14.33987	40.06491	115.0474
Lao PDR	2010	3.293	79.7	1147.095	67.5	71	37	2.745848	58.7	64	14.16958	41.74795	117.9072

primary	117.4473	116.4216	115.6251	113.4927		99.69438	102.0782	102.7406	105.5271	108.2311	97.95729	100.7252	99.70911	102.7985	113.5047	124.2325	120.5701	115.237	107.358	100.6383		97.07813	96.32021	96.82687	
secondary	41.13912	44.43643	48.61317	54.57287		72.19883	78.80386	82.61992	88.45461	92.69419	95.01077	94.18372			101.248	94.84226				91.85097		37.12344	36.18818	37.72521	
tertiary	14.69564	15.39878	16.96029	16.68907		38.759	43.74216	46.07117	48.4145	51.46385	55.904	58.58402	57.41973	59.44819	62.69139	65.26063	66.69764	69.47151	73.24486	75.91596					
Immu Meals	69	72	82	87		92	95	98	98	66	76	66	98	76	94	67	98	66	67	98		84	73	LL	
sanitation	61.7	64.6	67.6	70.5	70.9	48.2	49.2	50.1	51	51.9	52.7	53.5	54.3	55.1	55.8	56.5	57.2	57.9	58.5	59.1	59.7	61.9	63.4	64.9	
Health Exp	2.196618	2.118871	1.999604	1.865546		4.923018	5.454857	5.81219	6.179367	5.994659	5.085664	4.675974	5.063664	5.57703	5.289862	4.696938	4.454342	4.219823	4.211468	4.730342		1.836784	1.800491	2.050402	
Births hel staff		41.5				96.6			98.6	99.7	99.2			99.4		98.8				98.9			57		
prenatal Care		54.2				96.7			98.2		98.9			99.5		66				98.7			75.6		
water	69.5	71.5	73.5	75.5	75.7	56.3	57.2	58	58.8	59.6	60.2	60.9	61.5	62	62.5	62.9	63.3	63.7	64	64.2	64.4	66.6	67.7	68.9	
gdppc	1300.98	1445.869	1700.987	1751.397	1812.327	474.213	524.0248	571.5384	646.1192	797.9052	998.8223	1334.406	1633.384	2138.377	1717.073	2650.347	3772.932	4377.239	4400.615	4201.738	3973.44				
USMR	76.7	74	71.3	69.1	66.7	62.7	58.4	54.3	50.4	46.8	43.4	40.3	37.4	34.8	32.3	30	28	26.2	24.7	23.5	22.4	82.3	6.9 <i>T</i>	77.5	
fertilityR	3.215	3.138	3.063	2.991		2.143	2.098	2.081	2.091	2.124	2.176	2.245	2.324	2.407	2.487	2.555	2.607	2.641	2.657	2.655		2.903	2.88	2.851	
Year	2011	2012	2013	2014	2015	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2000	2001	2002	
Country	Lao PDR	Mongolia	Myanmar	Myanmar	Myanmar																				

Country	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	sanitation	Immu Meals	tertiary	secondary	primary
Myanmar	2004	2.769	72.8		71.2			1.96873	67.9	86		41.48846	98.76502
Myanmar	2005	2.714	70.5		72.3			1.830098	69.4	84		43.59526	98.37886
Myanmar	2006	2.652	68.1		73.5			1.776405	70.8	78		45.74356	97.38676
Myanmar	2007	2.585	65.8		74.6	79.8	63.9	1.684613	72.3	81	12.20094	46.24265	
Myanmar	2008	2.517	87.2		75.8			1.874623	73.8	82			98.19738
Myanmar	2009	2.449	61.4		76.9			2.045839	75.2	87		48.34838	96.27673
Myanmar	2010	2.386	59.3		78.1	83.1	70.6	1.920282	76.6	88		49.31614	96.31968
Myanmar	2011	2.33	57.2		79.2			1.868456	78	88	16.25354		
Myanmar	2012	2.28	55.3	1421.484	80.3			2.218232	79.4	84	14.90879		
Myanmar	2013	2.239	53.5	1106.992	80.4			2.1582	79.5	86			
Myanmar	2014	2.204	51.7	1203.845	80.5			2.275755	79.5	86		51.9519	98.29356
Myanmar	2015		72	1203.505	80.6				79.6				
Nepal	2000	4.03	80.6	231.433	77.1	27	11.9	5.428262	21.7	71	2.30446	29.01699	104.5941
Nepal	2001	3.877	75.9	248.8329	78.2	27.9	12.2	5.360805	23.4	71		31.74111	101.9494
Nepal	2002	3.724	71.5	246.8036	79.2			5.601118	25	71	2.1	35.89751	107.97
Nepal	2003	3.575	67.4	254.5539	80.2			5.484321	26.6	75	2.48114	37.8084	107.5831
Nepal	2004	3.43	63.5	288.6696	81.2		15.8	5.822965	28.3	73	3.31418		108.8225
Nepal	2005	3.289	60	318.7481	82.2			5.724054	29.9	74	5.59315	43.59361	110.0537
Nepal	2006	3.151	56.6	350.6085	83.2	43.7	18.7	5.69675	31.5	85	5.80818	41.79079	125.3721
Nepal	2007	3.012	53.6	396.1698	84.1			5.841113	33.1	81		42.12538	127.9769
Nepal	2008	2.873	50.7	476.5566	85.1			6.435955	34.7	79	8.57715	48.51114	127.0917
Nepal	2009	2.737	48	483.4034	86.1			6.407822	36.3	06	8.48876	48.95792	140.2408
Nepal	2010	2.606	45.4	595.4275	87			6.431306	37.9	86	11.05068	57.27984	147.0784
Nepal	2011	2.486	43.1	695.8832	88	58.3	43.4	6.729152	39.5	88	11.28677	60.66565	151.3077
Nepal	2012	2.381	40.9	685.4968	88.9			5.892638	41.1	86		65.5387	148.3331

Country	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	sanitation	Immu Meals	tertiary	secondary	primary
Nepal	2013	2.292	39	692.3363	89.8			5.686268	42.6	88	15.33597	67.44285	143.8493
Nepal	2014	2.222	37.4	701.6801	90.7	68.3	55.6	5.797226	44.2	88		68.89868	140.6295
Nepal	2015		35.8	732.2987	91.6				45.8				
Pakistan	2000	4.58	112.3	534.9158	88.5			2.787502	36.9	59			59.53671
Pakistan	2001	4.438	109.8	511.8111	88.7	43.3	23	2.607997	38.7	61			60.20979
Pakistan	2002	4.314	107.5	501.1855	88.9		23	2.763178	40.5	63			60.99193
Pakistan	2003	4.211	105.3	565.3238	89.1			2.608776	42.3	61	2.42461		65.50591
Pakistan	2004	4.129	103.2	652.0202	89.3			2.557923	44.1	67	3.00039		70.11277
Pakistan	2005	4.067	101.2	714.0368	89.5	36	31	2.913584	45.9	73	4.58698		76.26907
Pakistan	2006	4.02	99.3	876.9511	89.7			3.401686	47.6	71	4.5695	28.08961	74.75929
Pakistan	2007	3.98	97.4	953.7957	89.9	60.9	38.8	3.35354	49.4	67	5.14868	29.85401	82.59632
Pakistan	2008	3.942	95.5	1042.802	90.1	56	38	3.259085	51.2	67	5.12265	30.25652	84.03872
Pakistan	2009	3.901	93.7	1009.799	90.3			2.939144	53	57	6.32786	31.09156	86.29201
Pakistan	2010	3.855	91.8	1043.3	90.5			3.016097	54.8	69		31.10444	87.80067
Pakistan	2011	3.802	6.68	1230.815	90.7	64	43	3.00637	56.5	63	8.29895	31.36765	84.679
Pakistan	2012	3.744	87.8	1266.381	90.9	68	49	2.759727	58.3	61	9.68909	32.25236	84.80677
Pakistan	2013	3.682	85.6	1275.713	91.1	73.1	52.1	2.703924	60	63	10.24866	33.4488	83.22106
Pakistan	2014	3.617	83.3	1315.268	91.3			2.613916	61.8	63	10.67046	36.60602	85.81017
Pakistan	2015		81.1	1428.989	91.4				63.5				
Philippines	2000	3.814	39.7	1039.702	87.1	85.9	58	3.209178	63.8	78			
Philippines	2001	3.767	38.9	958.0116	87.4			2.998399	64.5	81	31.82205	78.37048	108.7947
Philippines	2002	3.71	38.1	1000.778	87.7			2.791162	65.1	82	34.16987	83.2264	107.5256
Philippines	2003	3.644	37.3	1011.287	88	87.6	59.8	3.247132	65.8	87	32.72327	85.44521	107.1438
Philippines	2004	3.569	36.5	1080.086	88.3			3.228149	66.4	92	31.86902	87.72598	106.0524
Philippines	2005	3.487	35.7	1196.54	88.6			3.913854	67.1	92	30.39994	87.59233	105.3943

primary	103.34	103.8987	106.097	108.6419				116.8559				106.9034	105.3815	102.4874	100.8548	99.34669	98.51393	97.78232	96.73159	94.20429	98.43876	97.71198	98.89122	99.42379	100.1062
secondary	85.84115	85.28065	85.61748	87.62613				92.68436													97.5406	100.1034	101.9464	101.9733	
tertiary	30.96467		32.63028	31.82241	33.14009	34.25201	34.548	37.5613	40.27379												20.87279	19.1139	21.04173	22.93329	24.70121
Immu Meals	92	92	92	88	80	79	85	90	88		66	66	66	66	96	66	66	98	98	67	66	66	66	66	66
sanitation	67.8	68.4	69.1	69.8	70.5	71.1	71.8	72.5	73.2	73.9	81.2	82.2	83.3	84.3	85.4	86.4	87.5	88.5	89.6	90.6	91.7	92.7	93.8	94.8	95.1
Health Exp	3.951646	3.940342	4.047475	4.410437	4.373973	4.289926	4.458154	4.557786	4.709985		3.774941	3.807311	3.887748	3.953595	4.282726	4.060817	4.062164	3.758752	3.444751	3.369	3.43257	3.281478	3.209661	3.676991	3.50335
Births hel staff			62.2			72.2		72.8			96							98.6							
prenatal Care			91.1			94.5		95.4			94.5							99.4							
water	88.9	89.2	89.5	89.8	90.1	90.5	90.8	91.1	91.5	91.8	79.7	80.8	82	83.1	84.2	85.4	86.5	87.6	88.8	89.9	91.1	92.2	93.3	94.5	95.6
gdppc	1395.213	1678.852	1929.133	1836.874	2145.24	2371.854	2604.656	2786.95	2872.512	2899.375	875.4122	837.6991	873.1472	989.4548	1074.662	1259.808	1448.761	1644.816	2054.489	2106.787	2819.651	3221.152	3350.685	3610.195	3852.881
USMR	34.9	34.2	33.4	32.6	31.9	31.2	30.4	29.6	28.8	28	16.3	15.8	15.4	15.1	28.9	14	13.2	12.5	11.8	11.3	10.9	10.6	10.4	10.2	10
fertilityR	3.404	3.324	3.251	3.187	3.133	3.088	3.048	3.011	2.977		2.241	2.247	2.257	2.268	2.278	2.284	2.283	2.274	2.257	2.233	2.203	2.17	2.138	2.108	2.083
Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Country	Philippines	Sri Lanka																							

Country	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	samitation	Immu Meals	tertiary	secondary	primary
Sri Lanka	2015		9.8	3926.174	95.6				95.1				
Vietnam	2000	2.01	33.8	433.3337	77.4	68.3	69.6	4.891328	52.9	97	7.91714		105.978
Vietnam	2001	1.954	32.5	448.8823	78.9			5.173643	54.6	98	8.05329		103.0972
Vietnam	2002	1.92	31.4	477.1059	80.3	86.4	85	4.698058	56.3	96	8.42327		99.57283
Vietnam	2003	1.901	30.4	530.8618	81.7			4.83899	58	93	8.8012		96.87029
Vietnam	2004	1.894	29.4	606.9044	83.1			5.087107	59.7	97			95.3783
Vietnam	2005	1.894	28.5	699.4998	84.5			5.376663	61.4	95	13.30503		94.60799
Vietnam	2006	1.901	27.7	796.6716	85.9	90.8	87.7	5.562586	63	93	16.29974		95.94718
Vietnam	2007	1.911	26.9	919.2093	87.3			6.092357	64.7	83	18.37306		97.48325
Vietnam	2008	1.923	26.2	1164.613	88.6			5.528342	66.4	92	18.76097		
Vietnam	2009	1.935	25.5	1232.37	89.9			6.039813	68.1	97	20.02718		100.4204
Vietnam	2010	1.946	24.8	1333.584	91.3			6.360849	69.7	98	22.71635		102.3152
Vietnam	2011	1.953	24.2	1542.67	92.6	93.7	92.9	6.201632	71.4	96	24.97785		103.9378
Vietnam	2012	1.957	23.5	1754.548	93.8			6.963581	73.1	96			107.124
Vietnam	2013	1.96	22.9	1907.564	95.1			7.165509	74.7	98	23.69121		106.0645
Vietnam	2014	1.961	22.3	2052.319	96.4	95.8	93.8	7.066778	76.3	97	31.23133		108.6184
Vietnam	2015		21.7	2111.138	97.6				78				
Timor-Leste	2000	7.112	110.2	434.3797	54.3			3.264429	37.4				
Timor-Leste	2001	7.092	104.6	522.0316	55.6			3.74928	37.4				
Timor-Leste	2002	7.037	99.1	496.1798	56.9	42.5	23.7	3.888593	37.5	56	9.50749		
Timor-Leste	2003	6.965	93.7	487.395	58.2	60.5	18.4	2.483034	37.6	55			
Timor-Leste	2004	6.64875	88.4	484.0884	59.6			1.309174	37.7	55		53.63857	97.76694
Timor-Leste	2005	6.3325	83.3	501.4292	60.9			1.047409	37.8	48		52.81884	90.1137
Timor-Leste	2006	6.01625	78.5	464.8352	62.4			0.652866	38	61			
Timor-Leste	2007	5.7	74.1	551.7206	63.8			0.36832	38.3	63			

Country	Year	fertilityR	USMR	gdppc	water	prenatal Care	Births hel staff	Health Exp	sanitation	Immu Meals	tertiary	secondary	primary
Timor-Leste	2008	5.7	70.2	673.3745	65.2			0.739219	38.5	73		50.53508	105.5909
Timor-Leste	2009	5.7	66.7	780.2611	66.7			1.018511	38.8	70	13.44906	61.15508	115.3167
Timor-Leste	2010	5.6	63.8	875.8366	68.2	84.4	29.9	0.922354	39.1	66	15.15506	67.67913	128.4188
Timor-Leste	2011	5.5	61.1	1015.716	69.7			0.757491	39.5	62		71.71386	131.7614
Timor-Leste	2012	5.3	58.7	1127.108	71.2			1.007887	39.8	73			
Timor-Leste	2013	5.2	56.5	1117.731	71.4			1.286772	40.1	70		72.80764	133.7559
Timor-Leste	2014	5.1	54.5	1131.231	71.7			1.475303	40.4	74		75.97304	136.047
Timor-Leste	2015		52.6	1134.426	71.9				40.6				
Thailand	2000	1.671	22.5	2016.041	91.9	91.8	99.3	3.791911	91.3	94	38.29742		96.4372
Thailand	2001	1.641	21.5	1896.971	92.4			3.738413	91.7	94	41.73405	62.06191	96.25363
Thailand	2002	1.616	20.5	2093.979	92.9			4.680765	92.1	94	42.23862	64.67283	97.10083
Thailand	2003	1.595	19.6	2349.385	93.3			4.764604	92.5	96	43.92173		
Thailand	2004	1.58	18.7	2643.479	93.8	94.3		4.567102	92.8	96	45.70748	69.29744	98.06905
Thailand	2005	1.568	17.8	2874.386	94.3			4.64479	93.2	96	47.15502	73.58401	96.9207
Thailand	2006	1.561	17	3351.118	94.7	97.8	97.3	4.85774	93.5	96	45.98269	74.27011	96.07091
Thailand	2007	1.557	16.3	3962.75	95.2			5.45259	93.5	96	53.34426	80.46656	96.32504
Thailand	2008	1.553	15.6	4384.783	95.6			5.66075	93.5	98	52.28525	80.98646	96.83968
Thailand	2009	1.551	15	4231.14	96	99.1	99.5	5.795263	93.4	98	53.45844	83.71282	96.46572
Thailand	2010	1.547	14.5	5111.909	96.4			5.409297	93.3	98	56.33325	86.11571	95.03139
Thailand	2011	1.542	14	5539.494	96.8			5.914257	93.3	98	58.94693	89.9431	95.5203
Thailand	2012	1.534	13.5	5915.221	97.1	98.1	9.66	6.158545	93.2	98	58.38731	89.49635	96.37569
Thailand	2013	1.524	13.1	6225.052	97.5			6.175215	93.1	66	58.85757	89.34488	96.88768
Thailand	2014	1.512	12.6	5969.94	97.8			6.529433	93	66			
Thailand	2015		12.3	5816.441	97.8				93				