

KㄴㄱㅣI 국 제 정 책 대 학 원
KDI School of Public Policy and Management

Kdi school working paper series

Aggregation, Uncertainty, and Discriminant Analysis

Tae H. Choi

December 2006
Working Paper 06-23

Aggregation, Uncertainty, and Discriminant Analysis

Tae H. Choi ${ }^{* 1}$
KDI School of Public Policy and Management

Abstract

An important role of accountants is to provide the financial summary for the economic activities of companies over the period. The preparation of financial statements is nothing but a linear aggregation process of accounting information. The numbers summarized in financial statements balance (i.e. aggregated financial information) computed from the aggregation process of a myriad of day-to-day transactions (i.e. disaggregated financial information) of companies. The consumers of accounting information utilize aggregated or disaggregated accounting information in their decision making. Discriminant analysis is a pervasive field of which accounting information is used to separate distinct sets of entities. This paper provide practices of examining the effects of aggregation by examining the impacts of aggregation on the discriminating between two entities. In addition, the students who take financial accounting courses can be benefited by understanding the accounting nature of linear procedures.

Key words: Aggregation, Discriminant Analysis, Unequal variance

JEL classification: M40, M41, M49
*Email: TChoi@KDIschool.ac.kr
Address: P.O. Box 184 Chungnyang, Seoul 130-868 Korea
Telephone: 82-3299-1221
Fax: 82-3299-1240
${ }^{1}$ Preliminary version

1 Introduction

An important role of accountants is to provide the financial summary to decision makers pertaining to the economic activities of companies over the period. The preparation of financial statements is nothing but a linear process of accounting information aggregation. The numbers summarized in financial statements balance (i.e. aggregated financial information) computed from the aggregation process of a myriad of day-to-day transactions (i.e. disaggregated financial information) of the companies. Accounting system collects and processes financial information of companies, and summaries and reports comprehensive information in relatively few line items. For example, financial accounting collects and processes information regarding daily transactions between the company and suppliers. Accountants aggregates those transactions and report in accounting balances including account payables, cash, or inventory. Managerial accounting aggregates various product costs into cost of good sold.

Discriminant analysis is applied to separate distinct sets of entities. In particular, this study investigate the relationship between discrimination and accounting aggregation procedure. Various applications can follow the discriminant analysis. For example, an auditor can use discriminant analysis in evaluating financial statements of audit clients (Koh and Killough, 1990). Bankruptcy prediction is another pervasive theme in applying the discriminant analysis to business (Altman, 1968; Balcaen and Ooghe, 2006). Banks can determine whether a firm should be classified as high credit risk or low credit risk using financial statement(i.e. aggregated accounting information). In doing so, they can also estimate the costs of misclassifying the entity. Explicit costs would be attached to the misclassifying an entity. A bank approves a loan to a firm by incorrectly classifying the company as low credit risk increases the likelihood that it would suffer from the potential loss due to the default of the company. On the other hand, a bank rejects a loan to a firm by incorrectly classifying the company as high credit is subject to the potential loss of profit opportunity. Therefore, accurate discrimination process is of substantial importance to various stakeholders.

An optimal decision rule for the discrimination is to minimize the average or expected cost of misclassification (ECM). Aforementioned example shows two types of errors are
associated with ECM. Classifying a firm as not likely to default when it does default is Type I error. On the other hand, Classifying a firm as likely to default when it does not default is Type II error. It is assumed that the decision makers adopt the classification scheme evaluated in terms of ECM.

Arya et al. (2000) examines the costs and benefits of aggregating financial information in the discriminating between two entities. They analyze the model in the context that the two entities fundamentally differ in their business activities. That is, the fundamental assumption of the previous research is that two entities have a common covariance matrix in transaction but have different mean value of their transaction matrices. While the equal covariance case uses linear discriminant function for the discrimination, unequal covariance case utilizes quadratic function. One purpose of this paper is providing accounting students with better understanding of accounting aggregation through the linear procedure. In the next section, the general discriminant model with unequal covariance matrices will be derived.

2 Basic Model of Classification

I assume that all parameters are known and I will follow linear procedures. Let π_{1} and π_{2} be $N\left(\mu_{1}, \Sigma_{1}\right)$ and $N\left(\mu_{2}, \Sigma_{2}\right)$ with $\mu_{1} \neq \mu_{2}$ and $\Sigma_{1} \neq \Sigma_{2}$, since the case $\Sigma_{1}=\Sigma_{2}$ has been treated in the seminar. I assume that Σ_{1} and Σ_{2} are nonsingular.

Notation 1 Let $\mathbf{b} \neq \mathbf{0}$ be a vector of p components and c be a scalar.

Notation $2 \Phi(z)=\int_{-\infty}^{z}(2 \pi)^{-\frac{1}{2}} e^{-\frac{1}{2} t^{2}} d t$

An observation \mathbf{x} is classified as from π_{1} if $\mathbf{b}^{\prime} \mathbf{x} \leq c$ and as from π_{2} if $\mathbf{b}^{\prime} \mathbf{x}>c$. $\mathbf{b}_{(\mathbf{1} \times \mathbf{p})}^{\prime} \mathbf{x}_{(\mathbf{p} \times \mathbf{1})}$ is a univariate normal distribution.

The mean is

$$
\begin{equation*}
\mathrm{E}\left(\mathbf{b}^{\prime} \mathbf{x}\right)=\mathbf{b}^{\prime} \mu_{\mathbf{i}}, \quad i=1,2 \tag{1}
\end{equation*}
$$

The variance is

$$
\begin{align*}
\mathrm{E}\left(\mathbf{b}^{\prime} \mathbf{x}-\mathbf{b}^{\prime} \mu_{\mathbf{i}}\right)^{2} & =\mathrm{E}\left(\mathbf{b}^{\prime}\left(\mathbf{x}-\mu_{\mathbf{i}}\right)\left(\mathbf{x}-\mu_{\mathbf{i}}\right)^{\prime} \mathbf{b}\right) \\
& =\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{i}} \mathbf{b}, \quad i=1,2 \tag{2}
\end{align*}
$$

3 Benchmark Solutions

$$
\begin{align*}
P(2 \mid 1) & =\operatorname{Pr}\left\{\mathbf{b}^{\prime} \mathbf{x}>c \mid \pi_{1}\right\} \\
& =\operatorname{Pr}\left\{\left.\frac{\mathbf{b}^{\prime} \mathbf{x}-\mathbf{b}^{\prime} \mu_{\mathbf{1}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}}>\frac{c-\mathbf{b}^{\prime} \mu_{\mathbf{1}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}} \right\rvert\, \pi_{1}\right\} \\
& =1-\Phi\left(\frac{c-\mathbf{b}^{\prime} \mu_{\mathbf{1}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}}\right) \tag{3}\\
P(1 \mid 2) & =\operatorname{Pr}\left\{\mathbf{b}^{\prime} \mathbf{x} \leq c \mid \pi_{2}\right\} \\
& =\operatorname{Pr}\left\{\left.\frac{\mathbf{b}^{\prime} \mathbf{x}-\mathbf{b}^{\prime} \mu_{\mathbf{2}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}} \leq \frac{c-\mathbf{b}^{\prime} \mu_{\mathbf{2}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}} \right\rvert\, \pi_{2}\right\} \\
& =1-\Phi\left(\frac{\mathbf{b}^{\prime} \mu_{\mathbf{2}}-c}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}\right) \tag{4}
\end{align*}
$$

I want to minimize these two probabilities. In other words, I desire to maximize following arguments

$$
\begin{align*}
& y_{1}=\frac{c-\mathbf{b}^{\prime} \mu_{\mathbf{1}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}} \tag{5}\\
& y_{2}=\frac{\mathbf{b}^{\prime} \mu_{\mathbf{2}}-c}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}} \tag{6}
\end{align*}
$$

From the equation (6),

$$
\begin{equation*}
c=\mathbf{b}^{\prime} \mu_{\mathbf{2}}-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

Then

$$
y_{1}=\frac{\mathbf{b}^{\prime} \mu_{\mathbf{2}}-\mathbf{b}^{\prime} \mu_{\mathbf{1}}-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}}
$$

Let $\delta=\mu_{2}-\mu_{1}$

$$
\begin{equation*}
y_{1}=\frac{\mathbf{b}^{\prime} \delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}} \tag{8}
\end{equation*}
$$

I differentiate y_{1} with respect to b to maximize y_{1} given y_{2}.

$$
\begin{aligned}
& \frac{\partial y_{1}}{\partial b}=\left(\delta-\frac{1}{2} y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{1}{2}} 2 \Sigma_{2} \mathbf{b}\right)\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{1}{2}} \\
&-\frac{1}{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{3}{2}}\left(\mathbf{b}^{\prime} \delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}\right) 2 \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b} \\
&= \delta\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{1}{2}}-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{1}{2}} \\
& \quad-\mathbf{b}^{\prime} \delta\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{3}{2}} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}+y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{3}{2}} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b} \\
&=\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{1}{2}}\left[\delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}-\mathbf{b}^{\prime} \delta\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right. \\
&\left.+y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right]=0
\end{aligned}
$$

Since $\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{1}{2}}$ is positive definite

$$
\begin{align*}
& {\left[\delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}-\mathbf{b}^{\prime} \delta\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}+y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right]=0} \\
& \delta=y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{1}{2}}+\mathbf{b}^{\prime} \delta\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b} \\
& =\left[\left(\frac{y_{2}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}\right) \boldsymbol{\Sigma}_{\mathbf{2}}+\left(\frac{\mathbf{b}^{\prime} \delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}{\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}}\right) \boldsymbol{\Sigma}_{\mathbf{1}}\right] \mathbf{b} \tag{9}
\end{align*}
$$

Let

$$
\begin{align*}
t_{1} & =\frac{\mathbf{b}^{\prime} \delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}{\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}} \tag{10}\\
t_{2} & =\frac{y_{2}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}} \tag{11}
\end{align*}
$$

Then

$$
\begin{equation*}
\delta=\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right) \mathbf{b} \tag{12}
\end{equation*}
$$

From (5) and (11)

$$
\begin{align*}
c & =\mathbf{b}^{\prime} \mu_{\mathbf{2}}-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}} \\
& =\mathbf{b}^{\prime} \mu_{\mathbf{2}}-t_{2} \mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b} \tag{13}
\end{align*}
$$

From (8) and (10)

$$
\begin{align*}
y_{1} & =\frac{\mathbf{b}^{\prime} \delta-y_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}} \\
& =t_{1}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}} \tag{14}
\end{align*}
$$

From (11)

$$
\begin{equation*}
y_{2}=t_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

Note that the right hand sides of (14) and (15) are homogeneous of degree 0 in t_{1} and t_{2}. In other words, if I plug (12) in (14) and (15), I always get same values in y_{1} and y_{2} regardless of t_{1} and t_{2}. Therefore it is convenient if I normalize t_{1} and t_{2} such that

$$
t_{1}+t_{2}=1
$$

If I can show that y_{1} is a monotonic increasing function of t_{1} and y_{2} is a monotonic decreasing function of $t_{1}\left(0 \leq t_{1} \leq 1\right)$, I can calculate optimum \mathbf{b} (I will discuss this later).

Since $\boldsymbol{\Sigma}_{\mathbf{1}}$ and $\boldsymbol{\Sigma}_{\mathbf{2}}$ are positive definite matrices, I can use Cholesky decomposition. In other words, there exists a matrix \mathbf{R} with independent columns. For the convenience, I can transform the covariance matrices to the following form

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathbf{2}}=\mathbf{R}^{\prime} \mathbf{R}, \\
& \boldsymbol{\Sigma}_{\mathbf{1}}=\mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R}=\mathbf{R}^{\prime}\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{p}
\end{array}\right) \mathbf{R}, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}>0
\end{aligned}
$$

$$
\delta=\mathbf{R}^{\prime} \theta
$$

From (12)

$$
\begin{aligned}
\mathbf{b} & =\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \delta \\
\mathbf{b}^{\prime} & =\delta^{\prime}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1^{\prime}}
\end{aligned}
$$

Then

$$
\begin{align*}
& y_{1}=t_{1}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}} \\
& =t_{1}\left[\delta^{\prime}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1^{\prime}} \boldsymbol{\Sigma}_{\mathbf{1}}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \delta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\theta^{\prime} \mathbf{R}\left(\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}\right)^{\prime}+\left(t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{\prime}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\theta^{\prime} \mathbf{R}\left(\boldsymbol{\Sigma}_{\mathbf{1}}{ }^{\prime} t_{1}+\boldsymbol{\Sigma}_{\mathbf{2}}{ }^{\prime} t_{2}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{1}}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\theta^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R} t_{1}+\mathbf{R}^{\prime} \mathbf{I} \mathbf{R} t_{2}\right)^{-1} \mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R}\left(t_{1} \mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R}+t_{2} \mathbf{R}^{\prime} \mathbf{I} \mathbf{R}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\theta^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right) \mathbf{R}\right)^{-1} \mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R}\left(\mathbf{R}^{\prime}\left(t_{1} \boldsymbol{\Lambda}+t_{2} \mathbf{I}\right) \mathbf{R}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\theta^{\prime} \mathbf{R} \mathbf{R}^{-1}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right)^{-1} \mathbf{R}^{\prime-1} \mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R} \mathbf{R}^{-1}\left(t_{1} \boldsymbol{\Lambda}+t_{2} \mathbf{I}\right)^{-1} \mathbf{R}^{\prime-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\theta^{\prime}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right)^{-1} \boldsymbol{\Lambda}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right)^{-1} \theta\right]^{\frac{1}{2}} \\
& =t_{1}\left[\sum_{i=1}^{p} \frac{\theta_{\mathbf{i}}^{2} \lambda_{\mathbf{i}}}{\left(t_{1} \lambda_{\mathbf{i}}+t_{2}\right)^{2}}\right]^{\frac{1}{2}} \tag{16}\\
& y_{2}=t_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}} \\
& =t_{2}\left[\delta^{\prime}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1^{\prime}} \boldsymbol{\Sigma}_{\mathbf{2}}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \delta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\theta^{\prime} \mathbf{R}\left(\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}\right)^{\prime}+\left(t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{\prime}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{2}}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\theta^{\prime} \mathbf{R}\left(\boldsymbol{\Sigma}_{\mathbf{1}}{ }^{\prime} t_{1}+\boldsymbol{\Sigma}_{\mathbf{2}}{ }^{\prime} t_{2}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{2}}\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\theta^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R} t_{1}+\mathbf{R}^{\prime} \mathbf{I} \mathbf{R} t_{2}\right)^{-1} \mathbf{R}^{\prime} \mathbf{I R}\left(t_{1} \mathbf{R}^{\prime} \boldsymbol{\Lambda} \mathbf{R}+t_{2} \mathbf{R}^{\prime} \mathbf{I R}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\theta^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right) \mathbf{R}\right)^{-1} \mathbf{R}^{\prime} \mathbf{I R}\left(\mathbf{R}^{\prime}\left(t_{1} \boldsymbol{\Lambda}+t_{2} \mathbf{I}\right) \mathbf{R}\right)^{-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\theta^{\prime} \mathbf{R R}^{-1}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right)^{-1} \mathbf{R}^{\prime-1} \mathbf{R}^{\prime} \mathbf{I R R}^{-1}\left(t_{1} \boldsymbol{\Lambda}+t_{2} \mathbf{I}\right)^{-1} \mathbf{R}^{\prime-1} \mathbf{R}^{\prime} \theta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\theta^{\prime}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right)^{-1}\left(\boldsymbol{\Lambda} t_{1}+\mathbf{I} t_{2}\right)^{-1} \theta\right]^{\frac{1}{2}} \\
& =t_{2}\left[\sum_{i=1}^{p} \frac{\theta_{\mathbf{i}}^{2}}{\left(t_{1} \lambda_{\mathbf{i}}+t_{2}\right)^{2}}\right]^{\frac{1}{2}} \tag{17}
\end{align*}
$$

Since $y_{1}>0$ and $y_{2}>0$, it is convenient to take the derivative of y_{1}^{2} instead of y_{1} where $t_{2}=1-t_{1}$.

$$
\begin{aligned}
y_{1}^{2} & =t_{1}^{2} \sum_{i=1}^{p} \frac{\theta_{\mathbf{i}}^{2} \lambda_{\mathbf{i}}}{\left(t_{1} \lambda_{\mathbf{i}}+t_{2}\right)^{2}} \\
& =t_{1}^{2} \frac{\theta_{\mathbf{1}}^{2} \lambda_{\mathbf{1}}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{2}}+\cdots
\end{aligned}
$$

$$
\begin{gathered}
y_{2}^{2}=t_{2}^{2} \sum_{i=1}^{p} \frac{\theta_{\mathbf{i}}^{2}}{\left(t_{1} \lambda_{\mathbf{i}}+t_{2}\right)^{2}} \\
=t_{2}^{2} \frac{\theta_{\mathbf{1}}^{2}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{2}}+\cdots \\
\frac{\partial y_{1}^{2}}{\partial t_{1}}=\frac{2 t_{1} \theta_{\mathbf{1}}^{2} \lambda_{\mathbf{1}}\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{2}-2\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)\left(\lambda_{\mathbf{1}}-1\right) t_{1}^{2} \theta_{\mathbf{1}}^{2} \lambda_{\mathbf{1}}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{4}}+\cdots \\
=\frac{2 t_{1} \theta_{\mathbf{1}}^{2} \lambda_{\mathbf{1}}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{3}}+\cdots \\
=2 t_{1} \sum_{i=1}^{p} \frac{\theta_{\mathbf{i}}^{2} \lambda_{\mathbf{i}}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{3}}>0 \\
\frac{\partial y_{2}^{2}}{\partial t_{1}}=\frac{-2\left(1-t_{1}\right) \theta_{\mathbf{1}}^{2}\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{2}-2\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)\left(\lambda_{\mathbf{1}}-1\right)\left(1-t_{1}\right)^{2} \theta_{\mathbf{1}}^{2}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{4}}+\cdots \\
=\frac{-2\left(1-t_{1}\right) \theta_{\mathbf{1}}^{2} \lambda_{\mathbf{1}}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{3}+\cdots} \\
=-2\left(1-t_{1}\right) \sum_{i=1}^{p} \frac{\theta_{\mathbf{i}}^{2} \lambda_{\mathbf{i}}}{\left(t_{1} \lambda_{\mathbf{1}}+1-t_{1}\right)^{3}}<0
\end{gathered}
$$

Therefore, y_{1} is a monotonic increasing function of t_{1} and y_{2} is a monotonic decreasing function of $t_{1}\left(0 \leq t_{1} \leq 1\right)$.

4 Use of Transaction Matrices

The double entry transformation matrix A and the six transactions are

$$
\left\{\begin{aligned}
t_{1}: & \text { collections of accounts receivable } \\
t_{2}: & \text { cash purchase of inventory } \\
t_{3}: & \text { credit sales } \\
t_{4}: & \text { cost of goods sold recognized } \\
t_{5}: & \text { cash sales } \\
t_{6}: & \text { cash expenses }
\end{aligned}\right.
$$

$$
\begin{gathered}
t_{1} \\
t_{2}
\end{gathered} t_{3} \quad t_{4} \quad t_{5} \quad t_{6} \quad\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 1 & -1 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
\mathbf{A}=\left(\begin{array}{ccccc}
\text { Cash } \\
\mathrm{A} / \mathrm{R} \\
0 & 1 & 0 & -1 & 0
\end{array} 0\right. \\
0 & 0 & -1 & 0 & -1 & 0 \\
\text { Inventory } \\
\text { Sales } \\
\text { Oxpenses }
\end{array}\right.
$$

The covariance matrices are

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathbf{1}}=\left(\begin{array}{cccccc}
0.3 & 0.1 & 0.2 & 0 & 0 & 0 \\
0 & 1.4 & 0 & 0.4 & 0 & 0 \\
0.1 & 0 & 1.2 & 0 & 0 & 0.3 \\
0.1 & 0 & 0 & 0.9 & 0 & 0 \\
0 & 0.3 & 0 & 0.3 & 1.0 & 0 \\
0.2 & 0 & 0.5 & 0 & 0 & 4
\end{array}\right) \\
& \boldsymbol{\Sigma}_{\mathbf{2}}=\left(\begin{array}{cccccc}
0.4 & 0.2 & 0.3 & 0 & 0 & 0 \\
0 & 1.7 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 1.7 & 0 & 0.4 & 0 \\
0.1 & 0 & 0 & 1.3 & 0 & 0 \\
0.2 & 0.3 & 0 & 0 & 1.4 & 0 \\
0.6 & 0.5 & 0 & 0 & 0 & 0.8
\end{array}\right)
\end{aligned}
$$

Suppose the mean transaction matrices are

$$
\begin{aligned}
& \mu_{\mathbf{1}}=\left(\begin{array}{lllll}
4.25 & 5.25 & 4 & 5 & 1.5
\end{array}\right)^{\prime} \\
& \mu_{\mathbf{2}}=\left(\begin{array}{lllll}
4.25 & 5.25 & 5 & 6 & 1.5
\end{array}\right)^{\prime}
\end{aligned}
$$

If t_{1} and t_{2} are given, I can calculate optimal \mathbf{b} by the equation (12). Then I can compute c by the equation (7). However, t_{1} and t_{2} are rarely known. So I should restrict our case to the following way.

4.1 Ether y_{1} or y_{2} is given

Suppose that y_{2} is given. If $y_{2}=y_{2}^{\star}$, then $y_{2}^{\star}=t_{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}$, where $\mathbf{b}=\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+\right.$ $\left.t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right)^{-1} \delta$. Therefore

$$
\begin{equation*}
y_{2}^{\star}=\left(1-t_{1}\right)\left[\delta^{\prime}\left\{t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+\left(1-t_{1}\right) \boldsymbol{\Sigma}_{\mathbf{2}}\right\}^{-1^{\prime}} \boldsymbol{\Sigma}_{\mathbf{2}}\left\{t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+\left(1-t_{1}\right) \boldsymbol{\Sigma}_{\mathbf{2}}\right\}^{-1} \delta\right]^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

Since y_{2}^{\star} is known and y_{2} is a decreasing function of t_{1}, I can easily approximate t_{1} by trial and $\operatorname{error}\left(0<t_{1} \leq 1\right)$.

Now I can compute $\mathbf{b}=\left\{t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+\left(1-t_{1}\right) \boldsymbol{\Sigma}_{\mathbf{2}}\right\}^{-1} \delta$. This is minimizing misclassification error.

Suppose $p(1 \mid 2)$ is known to be 46%. In other words, $\Phi\left(y_{2}\right)=1-p(1 \mid 2)$ and $y_{2}^{\star}=0.1$. Since y_{2} is decreasing function of t_{1}, I can try other values of t_{1} and insert in the equation (18) until I get the value $y_{2} \approx y_{2}^{\star}$. I can compute $t_{1} \approx 0.93$ by trial and error. Therefore, the optimum vector \mathbf{b} is computed by (12).

$$
\begin{gathered}
\mathbf{b}=\left(\begin{array}{llllll}
0.157 & -0.258 & -0.0796 & 0.961 & 0.772 & 0.00543
\end{array}\right)^{\prime} \\
y_{1}=0.1 \quad \text { by }(5)
\end{gathered}
$$

Therefore, the probability of misclassification $p(2 \mid 1)$ is

$$
p(2 \mid 1)=1-\Phi(y 1)=1-0.89435=0.10565
$$

t_{1}	y_{2}	y_{1}	$p(1 \mid 2)$	$p(2 \mid 1)$	$p(1 \mid 2)+p(2 \mid 1)$
0.930	0.1000	1.2500	0.46017	0.10565	0.56582
0.860	0.2000	1.1300	0.42074	0.12924	0.54998
0.780	0.3000	1.0100	0.38209	0.15625	0.53834
0.720	0.4004	0.9193	0.34443	0.17897	0.52340
0.640	0.5047	0.8023	0.30688	0.21119	0.51807
0.610	0.5428	0.7595	0.29363	0.22378	0.51741
0.600	0.5554	0.7454	0.28931	0.22801	$\mathbf{0 . 5 1 7 3 3}$
0.590	0.5679	0.7313	0.28505	0.23230	0.51735
0.560	0.6051	0.6895	0.27256	0.24525	0.51781
0.550	0.6173	0.6756	0.26852	0.24965	0.51817
0.540	0.6296	0.6619	0.26448	0.25402	0.51850
0.528	0.6442	0.6455	0.25972	0.25930	0.51902
0.528	$\mathbf{0 . 6 4 4 8}$	$\mathbf{0 . 6 4 4 8}$	0.25953	0.25953	$\mathbf{0 . 5 1 9 0 6}$
0.480	0.7000	0.5800	0.24196	0.28096	0.52292
0.400	0.8000	0.4800	0.21186	0.31561	0.52747
0.300	0.9000	0.3500	0.18406	0.36317	0.54723
0.210	1.0000	0.2400	0.15866	0.40517	0.56382

4.2 Minimax procedure

Suppose $y_{1}=y_{2}$. This equality is same as $y_{1}^{2}=y_{2}^{2}$ because $y_{1}>0$ and $y_{2}>0$.

$$
\begin{aligned}
0 & =y_{1}^{2}-y_{2}^{2}=t_{1}^{2} \mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}-\left(1-t_{1}\right)^{2} \mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b} \\
& =\mathbf{b}^{\prime}\left[t_{1}^{2} \boldsymbol{\Sigma}_{\mathbf{1}}-\left(1-t_{1}\right)^{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right] \mathbf{b}
\end{aligned}
$$

In this case, I can guess a value of t_{1} and solve the quadratic equation for \mathbf{b}. I get $t_{1} \approx 0.5275$.

$$
y_{1}=y_{2}=0.6448 \quad \text { by }(5) \text { and }(6)
$$

Therefore, the probability of misclassification $p(1 \mid 2)$ and $p(2 \mid 1)$ are

$$
p(1 \mid 2)=p(2 \mid 1)=1-\Phi(y 1)=1-0.74047=0.25953
$$

4.3 Case of a priori probabilities and cost function

If I are given a priori probabilities, p_{1} and p_{2}, and the cost functions, $c(1 \mid 2)$ and $c(2 \mid 1)$, the probability of a misclassification is

$$
p_{1} c(2 \mid 1)\left[1-\Phi\left(y_{1}\right)\right]+p_{2} c(1 \mid 2)\left[1-\Phi\left(y_{2}\right)\right]
$$

If I take derivative of the equation above

$$
\begin{equation*}
p_{1} c(2 \mid 1) \Phi\left(y_{1}\right) \frac{\partial y_{1}}{\partial t_{1}}+p_{2} c(1 \mid 2) \Phi\left(y_{2}\right) \frac{\partial y_{2}}{\partial t_{1}}=0 \tag{19}
\end{equation*}
$$

There is no easy solution to the differential equation (19).
4.3.1 $\quad \Sigma_{1}=k \Sigma_{2}$

$$
\frac{\frac{\partial y_{2}}{\partial t_{1}}}{\frac{\partial y_{1}}{\partial t_{1}}}=-\frac{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{-\frac{1}{2}}}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{-\frac{1}{2}}} \quad \text { by the Envelop theorems } 1994
$$

Therefore, the equation (19) can be expressed as

$$
\begin{align*}
\frac{p_{1} c(2 \mid 1)}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}} \Phi\left(y_{1}\right) & =\frac{p_{2} c(1 \mid 2)}{\left(\mathbf{b}^{\prime} \mathbf{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}} \Phi\left(y_{2}\right) \tag{20}\\
\frac{p_{1} c(2 \mid 1)}{\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)^{\frac{1}{2}}} \Phi\left(y_{1}\right) & =\frac{p_{2} c(1 \mid 2)}{\frac{1}{\sqrt{k}}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)^{\frac{1}{2}}} \Phi\left(y_{2}\right) \\
\phi\left(y_{1}\right) & =\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)} \sqrt{k} \phi\left(y_{2}\right) \\
(2 \pi)^{-\frac{1}{2}} e^{-\frac{1}{2} y_{1}^{2}} & =\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)} \sqrt{k}(2 \pi)^{-\frac{1}{2}} e^{-\frac{1}{2} y_{2}^{2}} \\
e^{-\frac{1}{2}\left(t_{1}^{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)-\left(1-t_{1}\right)^{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{b}\right)\right)} & =\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)} \sqrt{k} \\
-\frac{1}{2}\left(t_{1}^{2}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)-\frac{\left(1-t_{1}\right)^{2}}{k}\left(\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}\right)\right) & =\ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right)+\frac{1}{2} \ln k \\
\left(-k t_{1}^{2}+\left(1-t_{1}\right)^{2}\right) \mathbf{b}^{\prime} \mathbf{\Sigma}_{\mathbf{1}} \mathbf{b} & =k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \\
\left(\left(1-t_{1}\right)^{2}-\left(\sqrt{k} t_{1}\right)^{2}\right) \mathbf{b}^{\prime} \mathbf{\Sigma}_{\mathbf{1}} \mathbf{b} & =k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \\
\left(1-t_{1}-\sqrt{k} t_{1}\right)\left(1-t_{1}+\sqrt{k} t_{1}\right) \mathbf{b}^{\prime} \mathbf{\Sigma}_{\mathbf{1}} \mathbf{b} & =k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \tag{21}
\end{align*}
$$

As I proved in (16) and (17), $\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}$ is a monotonic increasing function in t_{1}. Therefore, whether LHS of the equation is monotonic increasing or decreasing in t_{1} depends on the
sign of $\left(1-t_{1}-\sqrt{k} t_{1}\right)\left(1-t_{1}+\sqrt{k} t_{1}\right) \mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}$. Since $0 \leq t_{1} \leq 1$, I can consider the following cases.

$k<1$	$\frac{1}{1+\sqrt{k}}<t_{1}<1$	Monotonic Decreasing
$k<1$	$0 \leq t_{1} \leq \frac{1}{1+\sqrt{k}}$	Monotonic Increasing
$k \geq 1$	$0<t_{1}<\frac{1}{1+\sqrt{k}}$	Monotonic Decreasing
$k \geq 1$	$\frac{1}{1+\sqrt{k}} \leq t_{1} \leq 1$	Monotonic Increasing

Suppose $\boldsymbol{\Sigma}_{\mathbf{1}}=2 \boldsymbol{\Sigma}_{\mathbf{2}}, p_{1}=p_{2}=0.5$, and $c(1 \mid 2)=c(2 \mid 1)=1$. RHS of the equation (21) becomes $k \ln k=1.386$. Since LHS is monotonic decreasing in t_{1}, I can easily compute t_{1} by trial and error. In this case, $t_{1}=0.2986, y_{1}=0.63$ and $y_{2}=1.04$. As a result, the total cost of misclassification is

$$
0.5\left(1-\Phi y_{1}\right)+0.5\left(1-\Phi y_{2}\right)=0.5(0.1492+0.2643)=0.2063
$$

There are ECM's for the different k's below.

k	y_{2}	y_{1}	$p(1 \mid 2)$	$p(2 \mid 1)$	$0.5 p(1 \mid 2)+0.5 p(2 \mid 1)$
0.3	1.12	0.14	0.1314	0.4443	0.2878
0.5	0.90	0.32	0.1841	0.3745	0.2793
1.0	0.68	0.68	0.2483	0.2483	0.2483
1.5	0.52	0.89	0.3015	0.1867	0.2441
2.0	0.63	1.04	0.2643	0.1492	0.2068
3.0	0.65	1.23	0.2578	0.1093	0.1836
4.0	0.68	1.36	0.2483	0.0869	0.1676
5.0	0.71	1.45	0.2389	0.0735	0.1562

4.3.2 $\quad \Sigma_{1}=\Sigma_{2}$

I want to show the result of the linear procedure is consistant with the analysis described in the paper (Arya et al., 2000).

$$
\begin{aligned}
\left(1-t_{1}-\sqrt{k} t_{1}\right)\left(1-t_{1}+\sqrt{k} t_{1}\right) \mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b} & =k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \\
\left(1-2 t_{1}\right) \mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b} & =0
\end{aligned}
$$

Since $\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b}$ is positive definite matrix, $t_{1}=\frac{1}{2}$. Therefore, if I plug t_{1} in the equation (12),

$$
\begin{align*}
& \delta=\left(t_{1} \boldsymbol{\Sigma}_{\mathbf{1}}+t_{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right) \mathbf{b} \\
&=\left(\frac{1}{2} \boldsymbol{\Sigma}_{\mathbf{1}}+\frac{1}{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right) \mathbf{b} \\
&= \frac{1}{2}\left(\boldsymbol{\Sigma}_{\mathbf{1}}+\boldsymbol{\Sigma}_{\mathbf{1}}\right) \\
&=\boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{b} \\
& \mathbf{b}=\boldsymbol{\Sigma}^{-\mathbf{1}} \delta \tag{22}
\end{align*}
$$

This vector is identical to the linear discriminant $\mathbf{l}_{\mathbf{y}}=\mathbf{\Sigma}_{\mathbf{y}}^{\mathbf{- 1}} \eta_{\mathbf{d}}$ (Arya et al., 2000).

5 Use of Balance Matrices

It is inevitable to lose information during the aggregation process since balance vector \mathbf{x} is shorter than transaction vector \mathbf{y} (i.e. $m \leq n$).

If I use the financial statement vector \mathbf{x} instead of the transaction vector \mathbf{y},

$$
\mathbf{A y}=x
$$

$$
\begin{align*}
t_{1} & t_{2}
\end{align*} t_{3} t_{4} t_{5} t_{6},\left(\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
\mathbf{A} & =\left(\begin{array}{cccccc}
\\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \text { Inventory } \\
\text { Sales } \\
\text { Expenses } \tag{23}\\
\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} & =\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} \\
\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}} & =\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime} \tag{24}\\
\mathbf{d} & =\mathbf{A} \delta \tag{25}\\
\mathbf{b}_{\mathbf{x}} & =\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right)^{-1} \mathbf{d} \\
\mathbf{x}_{\mathbf{1}} & =s_{1}\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}} \\
\mathbf{x}_{\mathbf{2}} & =s_{2}\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}}
\end{array}\right.
$$

Now I want to show that x_{1} is a monotonic increasing function of s_{1} and x_{2} is a monotonic decreasing function of $s_{1}\left(0 \leq t_{1} \leq 1\right)$. Since $\boldsymbol{\Sigma}_{\boldsymbol{1}}$ and $\boldsymbol{\Sigma}_{\boldsymbol{2}}$ are positive definite matrices, there exists a rectangular matrix $\mathbf{G}_{\mathbf{4} \times \mathbf{6}}$. For the convenience, I can transform the covariance matrices to the following form

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\mathbf{2}} & =\mathbf{G}^{\prime} \mathbf{G}, \\
\boldsymbol{\Sigma}_{\mathbf{1}} & =\mathbf{G}^{\prime} \boldsymbol{\Lambda} \mathbf{G}=\mathbf{G}^{\prime}\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right) \mathbf{G} \\
\delta & =\mathbf{G}^{\prime} \zeta
\end{aligned}
$$

Then

$$
\begin{align*}
x_{1} & =s_{1}\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}} \\
& =s_{1}\left[\mathbf{d}^{\prime}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right)^{-1^{\prime}} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right)^{-1} \mathbf{d}\right]^{\frac{1}{2}} \\
& =s_{1}\left[\mathbf{d}^{\prime}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}^{\prime}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}^{\prime}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right)^{-1} \mathbf{d}\right]^{\frac{1}{2}} \\
& =s_{1}\left[\zeta^{\prime} \mathbf{G A}^{\prime}\left(\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}\right)^{\prime} s_{1}+\left(\mathbf{A} \mathbf{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\right)^{\prime} s_{2}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime} s_{2}\right) \mathbf{A} \mathbf{G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{1}\left[\zeta^{\prime} \mathbf{G} \mathbf{A}^{\prime}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}}^{\prime} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}}^{\prime} \mathbf{A}^{\prime} s_{2}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime} s_{2}\right) \mathbf{A} \mathbf{G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{1}\left[\zeta^{\prime} \mathbf{G} \mathbf{A}^{\prime}\left(\mathbf{A G} \mathbf{G}^{\prime} \mathbf{\Lambda} \mathbf{G} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \mathbf{G}^{\prime} \mathbf{I} \mathbf{G} \mathbf{A}^{\prime} s_{2}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}\left(\mathbf{A} \mathbf{G}^{\prime} \mathbf{\Lambda} \mathbf{G} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \mathbf{G}^{\prime} \mathbf{I} \mathbf{G} \mathbf{A}^{\prime} s_{2}\right) \mathbf{A} \mathbf{G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{1}\left[\zeta^{\prime} \mathbf{G} \mathbf{A}^{\prime}\left(\mathbf{A} \mathbf{G}^{\prime}\left(\mathbf{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I} \mathbf{s}_{\mathbf{2}}\right) \mathbf{G} \mathbf{A}^{\prime}\right)^{-1} \mathbf{A} \mathbf{G}^{\prime} \mathbf{\Lambda} \mathbf{G} \mathbf{A}^{\prime}\left(\mathbf{A} \mathbf{G}^{\prime}\left(\mathbf{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I} \mathbf{s}_{\mathbf{2}}\right) \mathbf{G} \mathbf{A}^{\prime}\right) \mathbf{A} \mathbf{G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{1}\left[\zeta^{\prime}\left(\mathbf{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I s}_{\mathbf{2}}\right)^{-1} \boldsymbol{\Lambda}\left(\mathbf{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I} \mathbf{s}_{\mathbf{2}}\right)^{-1} \zeta\right]^{\frac{1}{2}} \\
& =s_{1}\left[\sum_{i=1}^{p} \frac{\zeta_{\mathbf{i}}^{\mathbf{2}} \lambda_{\mathbf{i}}}{\left(s_{1} \lambda_{\mathbf{i}}+s_{2}\right)^{2}}\right]^{\frac{1}{2}} \tag{26}
\end{align*}
$$

$$
\begin{align*}
& x_{2}=s_{2}\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}} \\
& =s_{2}\left[\mathbf{d}^{\prime}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} 1}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} 2}\right)^{-1^{\prime}} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right)^{-1} \mathbf{d}\right]^{\frac{1}{2}} \\
& =s_{2}\left[\mathbf{d}^{\prime}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} 1}^{\prime}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}^{\prime}\right)^{-1} \boldsymbol{\Sigma}_{\mathbf{x} 2}\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} 1}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} 2}\right)^{-1} \mathbf{d}\right]^{\frac{1}{2}} \\
& =s_{2}\left[\zeta^{\prime} \mathbf{G A}^{\prime}\left(\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}\right)^{\prime} s_{1}+\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\right)^{\prime} s_{2}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime} s_{2}\right) \mathbf{A} \mathbf{G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{2}\left[\zeta^{\prime} \mathbf{G} \mathbf{A}^{\prime}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}}^{\prime} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}}^{\prime} \mathbf{A}^{\prime} s_{2}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} s_{1}+\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime} s_{2}\right) \mathbf{A} \mathbf{G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{2}\left[\zeta^{\prime} \mathbf{G A}^{\prime}\left(\mathbf{A G}^{\prime} \boldsymbol{\Lambda} \mathbf{G A}^{\prime} s_{1}+\mathbf{A G}^{\prime} \mathbf{I} \mathbf{G A}^{\prime} s_{2}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\left(\mathbf{A G}^{\prime} \boldsymbol{\Lambda} \mathbf{G A}^{\prime} s_{1}+\mathbf{A G}^{\prime} \mathbf{I} \mathbf{G A}^{\prime} s_{2}\right) \mathbf{A G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{2}\left[\zeta^{\prime} \mathbf{G A}^{\prime}\left(\mathbf{A G}^{\prime}\left(\boldsymbol{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I s}_{\mathbf{2}}\right) \mathbf{G A}^{\prime}\right)^{-1} \mathbf{A G}^{\prime} \mathbf{I} \mathbf{G A}^{\prime}\left(\mathbf{A G}^{\prime}\left(\boldsymbol{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I s}_{\mathbf{2}}\right) \mathbf{G A}^{\prime}\right) \mathbf{A G}^{\prime} \zeta^{\prime}\right]^{\frac{1}{2}} \\
& =s_{2}\left[\zeta^{\prime}\left(\boldsymbol{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I} \mathbf{s}_{\mathbf{2}}\right)^{-1}\left(\boldsymbol{\Lambda} \mathbf{s}_{\mathbf{1}}+\mathbf{I} \mathbf{s}_{\mathbf{2}}\right)^{-1} \zeta\right]^{\frac{1}{2}} \\
& =s_{2}\left[\sum_{i=1}^{p} \frac{\zeta_{\mathbf{i}}^{2}}{\left(s_{1} \lambda_{\mathbf{i}}+s_{2}\right)^{2}}\right]^{\frac{1}{2}} \tag{27}
\end{align*}
$$

Therefore, by the same arguments in (16) and (17), x_{1} is a monotonic increasing function of s_{1} and s_{2} is a monotonic decreasing function of $s_{1}\left(0 \leq s_{1} \leq 1\right)$.

5.1 Ether x_{1} or x_{2} is given

I use same matrices in section (4).
Suppose x_{2} is given. If $x_{2}=x_{2}^{\star}$, then $\mathbf{x}_{\mathbf{2}}=s_{2}\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}}$, where $\mathbf{b}_{\mathbf{x}}=\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+\right.$ $\left.s_{2} \boldsymbol{\Sigma}_{\mathbf{x} 2}\right)^{-1} \mathbf{d}$. Therefore

$$
\begin{align*}
x_{2}^{\star}=\left(1-s_{1}\right)\left[\delta^{\prime} \mathbf{A}^{\prime}\left\{s_{1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}+\left(1-s_{1}\right) \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\right\}^{-1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\right. \\
\left.\left\{s_{1} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime}+\left(1-s_{1}\right) \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime}\right\}^{-1} \mathbf{A} \delta\right]^{\frac{1}{2}} \tag{28}
\end{align*}
$$

Since x_{2}^{\star} is known and x_{2} is a decreasing function of x_{1}, I can easily approximate s_{1} and compute $\mathbf{b}_{\mathbf{x}}=\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right)^{-1} \mathbf{d}$.

Suppose $p(1 \mid 2)$ is 46.4%. In other words, $\Phi\left(x_{2}\right)=1-p(1 \mid 2)$ and $x_{2}^{\star}=00.0913$. Since x_{2} is decreasing function of s_{1}, I can approximate $s_{1}=0.93$. Therefore, the optimum vector $\mathbf{b}_{\mathbf{x}}$ is

$$
\begin{gathered}
\mathbf{b}_{\mathbf{x}}=\left(\begin{array}{cccc}
-0.685 & -0.405 & -0.696 & 0.0881
\end{array}\right)^{\prime} \\
x_{1}=0.6478 \\
\text { by }(24)
\end{gathered}
$$

Therefore, the probability of misclassification $p(2 \mid 1)$ is

$$
p(2 \mid 1)=1-\Phi\left(x_{1}\right)=1-0.85298=0.14702
$$

s_{1}	x_{2}	x_{1}	$p(1 \mid 2)$	$p(2 \mid 1)$	$p(1 \mid 2)+p(2 \mid 1)$
0.930	0.0913	1.0493	0.46363	0.14702	0.61065
0.780	0.2728	0.8400	0.39250	0.20045	0.59296
0.720	0.3407	0.7619	0.36666	0.22306	0.58972
0.650	0.4162	0.6745	0.33863	0.25000	0.58863
0.648	0.4189	0.6720	0.33764	0.25078	0.58842
0.647	0.4200	0.6708	0.33724	0.25117	$\mathbf{0 . 5 8 8 4 1}$
0.646	0.4210	0.6696	0.33686	0.25156	0.58842
0.640	0.4274	0.6623	0.33454	0.25389	0.58843
0.590	0.4796	0.6025	0.31576	0.27342	0.58918
0.580	0.4899	0.5907	0.31210	0.27736	0.58946
0.534	$\mathbf{0 . 5 3 6 9}$	$\mathbf{0 . 5 3 6 9}$	0.29567	0.29567	$\mathbf{0 . 5 9 1 3 4}$
0.500	0.5700	0.4990	0.28434	0.30889	0.59323
0.300	0.7575	0.2866	0.22438	0.38721	0.61158
0.200	0.8458	0.1878	0.19883	0.42552	0.62435
0.100	0.9319	0.0923	0.17569	0.46323	0.63892

5.2 Minimax procedure

Suppose $x_{1}=x_{2}$. Since $x_{1}>0$ and $x_{2}>0, x_{1}^{2}=x_{2}^{2}$.

$$
\begin{aligned}
0 & =x_{1}^{2}-x_{2}^{2}=s_{1}^{2} \mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}}-\left(1-s_{1}\right)^{2} \mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}} \mathbf{b}_{\mathbf{x}} \\
& =s_{1}^{2} \mathbf{b}_{\mathbf{x}}^{\prime} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} \mathbf{b}_{\mathbf{x}}-\left(1-s_{1}\right)^{2} \mathbf{b}_{\mathbf{x}}^{\prime} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{2}} \mathbf{A}^{\prime} \mathbf{b}_{\mathbf{x}} \\
& =\mathbf{b}_{\mathbf{x}}^{\prime} \mathbf{A}\left[s_{1}^{2} \boldsymbol{\Sigma}_{\mathbf{1}}-\left(1-s_{1}\right)^{2} \boldsymbol{\Sigma}_{\mathbf{2}}\right] \mathbf{A}^{\prime} \mathbf{b}_{\mathbf{x}}
\end{aligned}
$$

I can guess a value of s_{1} and solve the quadratic equation for $\mathbf{b}_{\mathbf{x}}$. I get $s_{1} \approx 0.534$.

$$
x_{1}=x_{2}=0.5369 \quad \text { by }(24) \text { and }(25)
$$

Therefore, the probability of misclassification $p(1 \mid 2)$ and $p(2 \mid 1)$ are

$$
p(1 \mid 2)=p(2 \mid 1)=1-\Phi(x 1)=1-0.70433=0.29567
$$

5.3 Case of a priori probabilities and cost function

If I are given a priori probabilities, p_{1} and p_{2}, and the cost functions, $c(1 \mid 2)$ and $c(2 \mid 1)$, the probability of a misclassification is

$$
p_{1} c(2 \mid 1)\left[1-\Phi\left(x_{1}\right)\right]+p_{2} c(1 \mid 2)\left[1-\Phi\left(x_{2}\right)\right]
$$

The optimum solution can be found if I solve the following equation.

$$
\begin{equation*}
p_{1} c(2 \mid 1) \Phi\left(x_{1}\right) \frac{\partial x_{1}}{\partial t_{1}}+p_{2} c(1 \mid 2) \Phi\left(x_{2}\right) \frac{\partial x_{2}}{\partial t_{1}}=0 \tag{29}
\end{equation*}
$$

However, there is no direct way to solve the differential equation.

5.3.1 $\quad \Sigma_{x 1}=k \Sigma_{x 2}$

$$
\begin{align*}
\frac{p_{1} c(2 \mid 1)}{\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} 1} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}}} \Phi\left(x_{1}\right) & =\frac{p_{2} c(1 \mid 2)}{\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} 2} \mathbf{b}_{\mathbf{x}} \frac{1}{2}\right.} \Phi\left(x_{2}\right) \tag{30}\\
\frac{p_{1} c(2 \mid 1)}{\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} 1} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}}} \Phi\left(x_{1}\right) & =\frac{p_{2} c(1 \mid 2)}{\frac{1}{\sqrt{k}}\left(\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}} \mathbf{b}_{\mathbf{x}}\right)^{\frac{1}{2}}} \Phi\left(x_{2}\right) \\
\left(1-s_{1}-\sqrt{k} s_{1}\right)\left(1-s_{1}+\sqrt{k} s_{1}\right) \mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}} & =k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \\
\left(1-s_{1}-\sqrt{k} s_{1}\right)\left(1-s_{1}+\sqrt{k} s_{1}\right) \mathbf{b}_{\mathbf{x}}^{\prime} \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{1}} \mathbf{A}^{\prime} \mathbf{b}_{\mathbf{x}} & =k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \tag{31}
\end{align*}
$$

From (4.3.1) and (26), I know that LHS of the equation is monotonic increasing or decreasing in s_{1} depends on the sign of $\left(1-s_{1}-\sqrt{k} s_{1}\right)\left(1-s_{1}+\sqrt{k} s_{1}\right)$.

There are ECM's for the different k's below.

k	x_{2}	x_{1}	$p(1 \mid 2)$	$p(2 \mid 1)$	$0.5 p(1 \mid 2)+0.5 p(2 \mid 1)$
0.3	0.03	1.10	0.4878	0.1359	0.3119
0.5	0.21	0.86	0.4166	0.1958	0.3062
1.0	0.58	0.58	0.2819	0.2819	0.2819
1.5	0.81	0.50	0.2104	0.3096	0.2600
2.0	0.96	0.48	0.1688	0.3169	0.2428
3.0	1.16	0.49	0.1240	0.3129	0.2185
4.0	1.28	0.51	0.0995	0.3042	0.2018
5.0	1.38	0.54	0.0841	0.2952	0.1896

5.3.2 $\quad \Sigma_{x 1}=\Sigma_{x 2}$

$$
\begin{gathered}
\left(1-s_{1}-\sqrt{k} s_{1}\right)\left(1-s_{1}+\sqrt{k} s_{1}\right) \mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}}=k \ln k+2 k \ln \left(\frac{p_{2} c(1 \mid 2)}{p_{1} c(2 \mid 1)}\right) \\
\left(1-2 s_{1}\right) \mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}}=0
\end{gathered}
$$

Since $\mathbf{b}_{\mathbf{x}}^{\prime} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}}$ is positive definite matrix, $s_{1}=\frac{1}{2}$. Therefore, replacing s_{1} by $\frac{1}{2}$, the equation (12) gives the optimal discriminant

$$
\begin{align*}
& \mathbf{d}=\left(s_{1} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+s_{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right) \mathbf{b}_{\mathbf{x}} \\
&=\left(\frac{1}{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+\frac{1}{2} \boldsymbol{\Sigma}_{\mathbf{x} \mathbf{2}}\right) \mathbf{b}_{\mathbf{x}} \\
&= \frac{1}{2}\left(\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}+\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}\right) \\
&=\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}} \mathbf{b}_{\mathbf{x}} \\
& \quad \mathbf{b}_{\mathbf{x}}=\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{1}}^{-1} \mathbf{d} \tag{32}
\end{align*}
$$

The optimal vector $\mathbf{b}_{\mathbf{x}}$ is same as the linear discriminant $\mathbf{l}_{\mathbf{x}}=\boldsymbol{\Sigma}_{\mathbf{x}}^{-\mathbf{1}} \mu_{\mathbf{d}}$ (Arya et al., 2000).

6 Concluding Remarks

The educational purpose of this paper is providing accounting students with better understanding of the nature of accounting procedure. The preparation of financial statements is nothing but a linear process of accounting information aggregation. It is inevitable to lose information through the preparation process of financial statements (i.e. aggregation). The aggregation process provides benefits as well. One of the aggregation gains is related to the bounded rationality (Arya et al., 2000). More information may not be always optimal since the interpretation for overloaded information causes costs including time and money. Hence, many investors refer to audited financial statements for their decision making. Another potential benefit is related to the measurement errors. Measurement error in specific items may be canceled out through the aggregation process (Grunfeld and Griliches, 1960; Lim and Sunder, 1991; Datar and Gupta, 1994).

Accounting students can acquire better understanding of the mathematical implications of
accounting procedure from this exercise. Although this study provides general models for accounting discriminant analysis, next stage of development will likely extend this study in several directions. One case is that on average managers show equal mean matrix and unequal variance matrices in their transactions. To begin with, it will set up an agency model for the earnings management. I conjecture that investors (i.e. principal) can be better off from annual or quarterly reports (i.e. aggregated information) in the presence of volatility in the reported accounts of companies. There are two companies, managing earnings and non-managing earnings. Although two companies show same reported numbers in ending balance, investors can discriminated one from the other by checking the variance of accounts. In this regard, it would be worthwhile for future research to look into variability of accounting information over a longer interval.

References

Altman, E. I. (1968), "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankrupcy," The Journal of Finance vol. 23(4), 589-609

Arya, A., J. Fellingham, and D. Schrodeder (2000), "Accounting Information, Aggregation, and Discriminant Analysis," Management Science vol. 6(6), 790-806

Balcaen, S. and H. Ooghe (2006), "35 Years of Studies on Business Failure: An Overview of the Classic Statistical Methodologies and Their Related Problems," The British Accounting Review vol. 38, 63-93

Datar, S. and M. Gupta (1994), "Aggregation, Specification and Measurement Errors in Product Costing," The Accounting Review vol. 69(4), 567-591

Grunfeld, Y. and Z. Griliches (1960), "Is Aggregation Necessaarily Bad?" The Review of Economics and Statistics vol. 42, 1-13

Koh, H. C. and L. N. Killough (1990), "The Use of Multiple Discriminant Analysis in the Assessment of The Going-Concern Status of An Audit Client," Journal of Business Finance and Accounting vol. 17(2), 179-192

Lim, S. S. and S. Sunder (1991), "Efficiency of Asset Valuation Rules Under Price Movement and Measurement Errors," The Accounting Review vol. 66(4), 669-693

Simon, C. (1994), Mathematics for Economists, New York, NY: W.W. Norton \& Company, Inc.

Working Paper Series

Category	Serial \#	Author	Title
Working Paper	99-01	Se-Il Park	Labor Market Policy and The Social Safety Net in Korea: After 1997 Crisis
Working Paper	99-02	Sang-Woo Nam	Korea's Economic Crisis and Corporate Governance
Working Paper	99-03	Sangmoon Hahm	Monetary Bands and Monetary Neutrality
Working Paper	99-04	Jong-II You Ju-Ho Lee	Economic and Social Consequences of globalization: The Case of South Korea
Working Paper	99-05	Sang-Woo Nam	Reform of the Financial Sector in East Asia
Working Paper	99-06	Hun-Joo Park	Dirigiste Modernization, Coalition Politics, and Financial Policy Towards Small Business: Korea, Japan, and Taiwan Compared
Working Paper	99-07	Kong-Kyun Ro	Mother's Education and Child's Health: Economic Anlaysis of Korean Data
Working Paper	99-08	Euysung Kim	Trade Liberalization and Productivity Growth in Korean Manufacturing Industries: Price Protection, Market Power, and Scale Efficiency
Working Paper	99-09	Gill-Chin Lim	Global Political-Economic System and Financial Crisis: Korea, Brazil and the IMF
Working Paper	$\begin{gathered} 99-10 \\ (\mathrm{C} 99-01) \end{gathered}$	Seung-Joo Lee	LG Household \& Health Care: Building a High-Performing Organization
Working Paper	00-01	Sangmoon Hahm Kyung-Soo Kim Ho-Mou Wu	Gains from Currency Convertibility: A Case of Incomplete Markets
Working Paper	00-02	Jong-Il You	The Bretton Woods Institutions: Evolution, Reform and Change
Working Paper	00-03	Dukgeun Ahn	Linkages between International Financial and Trade Institutions: IMF, World Bank and WTO
Working Paper	00-04	Woochan Kim	Does Capital Account Liberalization Discipline Budget Deficit?
Working Paper	00-05	Sunwoong Kim Shale Horowitz	Public Interest "blackballing" in South Korea's Elections: One-Trick Pony, or Wave of the Future?
Working Paper	00-06	Woochan Kim	Do Foreign Investors Perform Better than Locals? Information Asymmetry versus Investor Sophistication
Working Paper	00-07	Gill-Chin Lim Joon Han	North-South Cooperation for Food Supply: Demographic Analysis and Policy Directions
Working Paper	$00-08$ (C00-01)	Seung-Joo Lee	Strategic Newspaper Management: Case Study of Maeil Business
Working Paper	01-01	Seung-Joo Lee	Nokia: Strategic Transformation and Growth
Working Paper	01-02	Woochan Kim Shang-Jin Wei	Offshore Investment Funds: Monsters in Emerging Markets?
Working Paper	01-03	Dukgeun Ahn	Comparative Analysis of the SPS and the TBT Agreements
Working Paper	01-04	Sunwoong Kim Ju-Ho Lee	Demand for Education and Developmental State: Private Tutoring in South Korea
Working Paper	01-05	Ju-Ho Lee Young-Kyu Moh	Do Unions Inhibit Labor Flexibility? Lessons from Korea
Working Paper	01-06	Woochan Kim Yangho Byeon	Restructuring Korean Bank's Short-Term Debts in 1998 - Detailed Accounts and Their Implications -
Working Paper	01-07	Yoon-Ha YOO	Private Tutoring as Rent Seeking Activity Under Tuition Control

[^0]
Working Paper Series

Category	Serial \#	Author	Title
Working Paper	01-08	Kong-Kyun Ro	경제활동인구 변동의 요인분석: 선진국과의 비교분석
Working Paper	02-01	Sangmoon Hahm	Restructuring of the Public Enterprise after the Crisis : The Case of Deposit Insurance Fund
Working Paper	02-02	Kyong-Dong KIM	The Culture of Industrial Relations in Korea : An alternative Sociological Approach
Working Paper	02-03	Dukgeun Ahn	Korean Experience of the Dispute Settlement in the world Trading System
Working Paper	02-04	BERNARD S. BLACK Hasung Jang Woochan Kim	Does Corporate Governance Matter? (Evidence from the Korean Market)
Working Paper	02-05	Sunwoong Kim Ju-Ho Lee	Secondary School Equalization Policies in South Korea
Working Paper	02-06	Yoon-Ha YOO	Penalty for Mismatch Between Ability and Quality, and School Choice
Working Paper	02-07	Dukgeun Ahn Han-Young Lie	Legal Issues of Privatization in Government Procurement Agreements: Experience of Korea from Bilateral and WTO Agreements
Working Paper	02-08	David J. Behling Kyong Shik Eom	U.S. Mortgage Markets and Institutions and Their Relevance for Korea
Working Paper	03-01	Sang-Moon Hahm	Transmission of Stock Returns and Volatility: the Case of Korea
Working Paper	03-02	Yoon Ha Yoo	Does Evidentiary Uncertainty Induce Excessive Injurer Care?
Working Paper	03-03	Yoon Ha Yoo	Competition to Enter a Better School and Private Tutoring
Working Paper	03-04	Sunwoong Kim Ju-Ho Lee	Hierarchy and Market Competition in South Korea's Higher Education Sector
Working Paper	03-05	Chul Chung	Factor Content of Trade: Nonhomothetic Preferences and "Missing Trade"
Working Paper	03-06	Hun Joo Park	RECASTING KOREAN DIRIGISME
Working Paper	03-07	Taejong Kim Ju-Ho Lee	Mixing versus Sorting in Schooling: Evidence from the Equalization Policy in South Korea
Working Paper	03-08	Naohito Abe	Managerial Incentive Mechanisms and Turnover of Company Presidents and Directors in Japan
Working Paper	03-09	Naohito Abe Noel Gaston Katsuyuki Kubo	EXECUTIVE PAY IN JAPAN: THE ROLE OF BANK-APPOINTED MONITORS AND THE MAIN BANK RELATIONSHIP
Working Paper	03-10	Chai-On Lee	Foreign Exchange Rates Determination in the light of Marx's Labor-Value Theory
Working Paper	03-11	Taejong Kim	Political Economy and Population Growth in Early Modern Japan
Working Paper	03-12	Il-Horn Hann Kai-Lung Hui Tom S. Lee I.P.L. Png	Direct Marketing: Privacy and Competition
Working Paper	03-13	Marcus Noland	RELIGION, CULTURE, AND ECONOMIC PERFORMANCE
Working Paper	04-01	Takao Kato Woochan Kim Ju Ho Lee	EXECUTIVE COMPENSATION AND FIRM PERFORMANCE IN KOREA
Working Paper	04-02	Kyoung-Dong Kim	Korean Modernization Revisited: An Alternative View from the Other Side of History

[^1]
Working Paper Series

Category	Serial \#	Author	Title
Working Paper	04-03	Lee Seok Hwang	Ultimate Ownership, Income Management, and Legal and Extra-Legal Institutions
Working Paper	04-04	Dongsoo Kang	Key Success Factors in the Revitalization of Distressed Firms : A Case of the Korean Corporate Workouts
Working Paper	04-05	Il Chong Nam Woochan Kim	Corporate Governance of Newly Privatized Firms: The Remaining Issues in Korea
Working Paper	04-06	Hee Soo Chung Jeong Ho Kim Hyuk Il Kwon	Housing Speculation and Housing Price Bubble in Korea
Working Paper	04-07	Yoon-Ha Yoo	Uncertainty and Negligence Rules
Working Paper	04-08	Young Ki Lee	Pension and Retirement Fund Management
Working Paper	04-09	Wooheon Rhee Tack Yun	Implications of Quasi-Geometric Discountingon the Observable Sharp e Ratio
Working Paper	04-10	Seung-Joo Lee	Growth Strategy: A Conceptual Framework
$\begin{gathered} \hline \text { Working } \\ \text { Paper } \end{gathered}$	04-11	Boon-Young Lee Seung-Joo Lee	Case Study of Samsung's Mobile Phone Business
Working Paper	04-12	Sung Yeung Kwack Young Sun Lee	What Determines Saving Rate in Korea?: the Role of Demography
Working Paper	04-13	Ki-Eun Rhee	Collusion in Repeated Auctions with Externalities
Working Paper	04-14	Jaeun Shin Sangho Moon	IMPACT OF DUAL ELIGIBILITY ON HEALTHCARE USE BY MEDICARE BENEFICIARIES
Working Paper	04-15	Hun Joo Park Yeun-Sook Park	Riding into the Sunset: The Political Economy of Bicycles as a Declining Industry in Korea
Working Paper	04-16	Woochan Kim Hasung Jang Bernard S. Black	Predicting Firm's Corporate Governance Choices: Evidence from Korea
Working Paper	04-17	Tae Hee Choi	Characteristics of Firms that Persistently Meet or Beat Analysts' Forecasts
Working Paper	04-18	Taejong Kim Yoichi Okita	Is There a Premium for Elite College Education: Evidence from a Natural Experiment in Japan
Working Paper	04-19	Leonard K. Cheng Jae Nahm	Product Boundary, Vertical Competition, and the Double Mark-up Problem
Working Paper	04-20	Woochan Kim Young-Jae Lim Taeyoon Sung	What Determines the Ownership Structure of Business Conglomerates? : On the Cash Flow Rights of Korea's Chaebol
Working Paper	04-21	Taejong Kim	Shadow Education: School Quality and Demand for Private Tutoring in Korea
Working Paper	04-22	Ki-Eun Rhee Raphael Thomadsen	Costly Collusion in Differentiated Industries
Working Paper	04-23	Jaeun Shin Sangho Moon	HMO plans, Self-selection, and Utilization of Health Care Services
Working Paper	04-24	Yoon-Ha Yoo	Risk Aversion and Incentive to Abide By Legal Rules
Working Paper	04-25	Ji Hong Kim	Speculative Attack and Korean Exchange Rate Regime
Working Paper	05-01	Woochan Kim Taeyoon Sung	What Makes Firms Manage FX Risk? : Evidence from an Emerging Market
Working Paper	05-02	Janghyuk Lee Laoucine Kerbache	Internet Media Planning: An Optimization Model

[^2]Working Paper Series

Category	Serial \#	Author	Title
Working Paper	05-03	Kun-Ho Lee	Risk in the Credit Card Industry When Consumer Types are Not Observable
Working Paper	05-04	Kyong-Dong KIM	Why Korea Is So Prone To Conflict: An Alternative Sociological Analysis
Working Paper	05-05	Dukgeun AHN	Why Should Non-actionable Subsidy Be Non-actionable?
Working Paper	05-06	Seung-Joo LEE	Case Study of L'Oréal: Innovation and Growth Strategy
Working Paper	05-07	Seung-Joo LEE	Case Study of BMW: The Ultimate Driving Machine
Working Paper	05-08	Taejong KIM	Do School Ties Matter? Evidence from the Promotion of Public Prosecutors in Korea
Working Paper	05-09	Hun Joo PARK	Paradigms and Fallacies: Rethinking Northeast Asian Security
Working Paper	05-10	WOOCHAN KIM TAEYOON SUNG	What Makes Group-Affiliated Firms Go Public?
Working Paper	05-11	BERNARD S. BLACK WOOCHAN KIM HASUNG JANG KYUNG-SUH	Does Corporate Governance Predict Firms' Market Values? Time Series Evidence from Korea
Working Paper	05-12	Kun-Ho Lee	Estimating Probability of Default For the Foundation IRB Approach In Countries That Had Experienced Extreme Credit Crises
Working Paper	05-13	Ji-Hong KIM	Optimal Policy Response To Speculative Attack
Working Paper	05-14	Kwon Jung Boon Young Lee	Coupon Redemption Behaviors among Korean Consumers: Effects of Distribution Method, Face Value, and Benefits on Coupon Redemption Rates in Service Sector
Working Paper	06-01	Kee-Hong Bae Seung-Bo Kim Woochan Kim	Family Control and Expropriation of Not-for-Profit Organizations: Evidence from Korean Private Universities
Working Paper	06-02	Jaeun Shin	How Good is Korean Health Care? An International Comparison of Health Care Systems
Working Paper	06-03	Tae Hee Choi	Timeliness of Asset Write-offs
Working Paper	06-04	Jin PARK	Conflict Resolution Case Study: The National Education Information System (NEIS)
Working Paper	06-05	YuSang CHANG	DYNAMIC COMPETITIVE PARADIGM OF MANAGING MOVING TARGETS;
Working Paper	06-06	Jin PARK	A Tale of Two Government Reforms in Korea
Working Paper	06-07	Itho YOO	Fiscal Balance Forecast of Cambodia 2007-2011
Working Paper	06-08	Itho YOO	PAYG pension in a small open economy
Working Paper	06-09	Kwon JUNG Clement LIM	IMPULSE BUYING BEHAVIORS ON THE INTERNET
Working Paper	06-10	Joong H. HAN	Liquidation Value and Debt Availability: An Empirical Investigation
Working Paper	06-11	Brandon Julio, Woojin Kim Michael S. Weisbach	Uses of Funds and the Sources of Financing: Corporate Investment and Debt Contract Design

* The above papers are available at KDI School Website http://www.kdischool.ac.kr/faculty/paper.asp.

You may get additional copy of the documents by downloading it using the Acrobat Reader.

Working Paper Series

Category	Serial \#	Author	Title
Working Paper	$06-12$	Hun Joo Park	Toward People-centered Development: A Reflection on the Korean Experience
Working Paper	$06-13$	Hun Joo Park	The Perspective of Small Business in South Korea
Working Paper	$06-14$	Younguck KANG	Collective Experience and Civil Society in Governance
Working Paper	$06-15$	Dong-Young KIM	The Roles of Government Officials as Policy Entrepreneurs in Consensus Building Process
Working Paper	$06-16$	Ji Hong KIM	Military Service : draft or recruit
Working Paper	$06-17$	Ji Hong KIM	Korea-US FTA
Working Paper	$06-18$	Ki-Eun RHEE	Reevaluating Merger Guidelines for the New Economy
Working Paper	$06-19$	Jihong KIM Taejong KIM Insook LEE	Economic Assimilation of North Korean Refugees in South Korea: Survey Evidence
Working Paper	$06-20$	Seong-Ho CHO	ON THE STOCK RETURN METHOD TO DETERMINING INDUSTRY SUBSTRUCTURE: AIRLINE, BANKING, AND OIL INDUSTRIES
Working Paper	$06-21$	Seong-Ho CHO	DETECTING INDUSTRY SUBSTRUCTURE: - Case of Banking, Steel and Pharmaceutical Industries-
Working Paper	$06-22$	Tae H. Choi	Ethical Commitment, Corporate Financial Factors: A Survey Study of Korean Companies
Working Paper	$06-23$	Tae H. Choi	Aggregation, Uncertainty, and Discriminant Analysis

* The above papers are available at KDI School Website http://www.kdischool.ac.kr/faculty/paper.asp. You may get additional copy of the documents by downloading it using the Acrobat Reader.

[^0]: * The above papers are available at KDI School Website http://www.kdischool.ac.kr/faculty/paper.asp.

 You may get additional copy of the documents by downloading it using the Acrobat Reader.

[^1]: * The above papers are available at KDI School Website http://www.kdischool.ac.kr/faculty/paper.asp.

 You may get additional copy of the documents by downloading it using the Acrobat Reader.

[^2]: * The above papers are available at KDI School Website http://www.kdischool.ac.kr/faculty/paper.asp.

 You may get additional copy of the documents by downloading it using the Acrobat Reader.

