EXECUTIVE PAY IN JAPAN: THE ROLE OF BANK-APPOINTED MONITORS
AND THE MAIN BANK RELATIONSHIP *

Naohito Abe
Institute of Economic Research, Hitotsubashi University

Noel Gaston
School of Business, Bond University
and
Development Bank of Japan

Katsuyuki Kubo
Institute of Economic Research, Hitotsubashi University

November 3, 2003

Not for citation without permission

* The authors would like to thank Hodaka Morita, Kazunori Suzuki, Peng Xu, and Yishay Yafeh for their valuable comments. In addition, we would like to acknowledge the assistance of Yoko Oguro and Mayumi Okado with the data collection. Noel Gaston would like to acknowledge the hospitality and support provided by the Center for Economic Institutions at Hitotsubashi University and the Development Bank of Japan. Katsuyuki Kubo would like to thank the Ishii Memorial Securities Research Promotion Foundation for its financial support. Naturally, the final responsibility for all errors and omissions rests with the authors alone.

Corresponding author: N. Gaston, Research Institute of Capital Formation, The Development Bank of Japan, 1-9-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; e-mail: noel_gaston@bond.edu.au.
Abstract

A feature of tournament models is that executive compensation is not independent of the wages paid at lower levels of the corporate hierarchy. Agency models show that compensation based on firm performance is a means by which incentives can be provided to executives once a promotion tournament has been resolved. In this paper, we combine elements of both models and show that the existence of an outsider who monitors the firm’s activities will lower the sensitivity of pay to firm performance for top executives and reduce the importance of tournament-based incentives. Using panel data for 55 Japanese electronics firms, we find support for the notion that bank-appointed Board members help monitor top executives and that tournament considerations are a particularly important feature of executive compensation in Japan.

Keywords: Executive pay; tournaments; agency; monitoring; main bank relationship.

JEL classification: J33, G30, J44, L63.
1. Introduction

Rewards for executives often include performance-linked remuneration. In large firms with internal labor markets, the relative rewards across levels of the corporate hierarchy also provide incentives to workers and managers. In other words, executive compensation schemes have elements that reflect rewards for having won promotion ‘tournaments’ as well as incentives to address classic agency concerns. In this paper, we develop a model that combines important elements of both the standard tournament and agency models to study the compensation of Japanese top executives.

Tournament or rank-order models are often considered appropriate for studying compensation schemes within firms with internal hierarchies or job ladders. Such models seem particularly suitable for studying executive compensation at Japanese firms, with their lifetime employment systems and well-developed corporate hierarchies. In the presence of moral hazard and costly monitoring, compensation schemes that depend on relative rather than absolute performance may provide appropriate incentives for workers.\(^1\) It is well known that incentives, in the sense of inducing agents to take actions in the best interests of the firm’s shareholders, are increasing in the spread between first prize (direct salary plus share options and performance-related bonuses, e.g.) and second prize. Further, this spread exceeds the difference in productivity between ‘winners’ and ‘losers.’

In contrast, agency models show that compensation based on firm performance is a means by which incentives can be provided to executives, once a promotion tournament has

\(^1\) A major benefit of tournaments is that they preserve the ordinal rank of "contestants" for highly correlated productivity shocks (Holmström, 1979; Lazear and Rosen, 1981; Green and Stokey, 1983). Dye (1984) lists some potential drawbacks associated with tournament structures. For example, they may have side effects such as increased mobility of losing contestants who still possess valuable specific human capital as well as incentives to sabotage opponents (see also Lazear, 1989). However, Holmström and Tirole (1989) note that tournaments are quite commonplace within firms. Vancil (1987) describes many CEO succession rites as a "horse race."
been resolved. It is standard practice in economics to assume that agents pursue their own goals, such as the enjoyment of perquisites (e.g., taking leisure time on the job) as well as the maximization of their own income (Jensen and Meckling, 1976). This explains the considerable attention paid to honing compensation or incentive schemes, which may include profit-sharing arrangements, granting share options, or bonus payments tied to performance as mechanisms that help to align top management interests with shareholder interests.²

In the empirical part of the paper, we examine the importance of agency and tournament considerations for top executive compensation in Japan. In particular, we focus on the impact of the main bank relationship and the role of bank-appointed members to the Board of Directors on both the level and the sensitivity of executive compensation to firm performance as well as the importance placed on tournament-based incentives. It has been argued that the main bank has played a major role in monitoring companies (e.g., Sheard, 1989; Aoki, 1994).³ Our focus is related, because if the main bank does perform this monitoring role, then this should affect executive compensation as well as corporate performance. In addition, we examine whether there is a significant difference in the level and composition of executive compensation in firms with bank-appointed directors on their Boards. Specifically, we investigate the hypothesis that the pay-performance sensitivity of executive pay is smaller in firms that have bank-appointed directors. The implicit

² Masson (1971) was one of the first studies to investigate the joint hypothesis of executive shareholding and improved corporate performance. The importance of effectively tying executive ‘fortunes’ to their companies’ ‘fortunes’ is documented by Benston (1985), Coughlan and Schmidt (1985), Murphy (1985, 1999), as well as Morck et al. (1988). Shleifer and Vishny (1988), however, counsel caution when interpreting larger shareholdings as properly motivating managers to maximize value. For instance, they cite examples where managers may push for short-term contracts when they possess inside information that earnings will improve.

³ On the other hand, recent studies suggest that the monitoring by banks has been largely ineffective (e.g., Hanazaki and Horiuchi, 2000).
assumption is that banks can better observe the behaviour of executives when they have a member on the Board. In turn, this information is used to determine the nature of the tournament, the structure of compensation and incentive contracts for executives.

Existing research on executive pay in Japan (e.g., Kaplan, 1994; Kato, 1997; Xu, 1997; Kubo, 2001) suggests that there is a positive and significant relationship between directors’ bonuses and firm profits, although the relationship between directors’ pay and performance is far weaker. In addition, Kato (1997) shows that the compensation paid to directors is significantly smaller in the companies of keiretsu. However, no previous studies have investigated the effect of the main bank relationship on executive compensation, i.e., the differences in the level as well as the performance sensitivity of executive pay across firms with or without relationships with main banks.4

The next section introduces a standard tournament model and discusses the issues involved once the tournament is resolved. In section 3, our focus is redirected to the incentives that would increase CEO effort. Specifically, we incorporate performance-based incentives into a ‘hybrid’ tournament and agency model. Conditions of observability, or the existence of an independent monitor, dictate the extent to which these incentives take the form of increased performance pay. Section 4 empirically examines the relationship between the pay hierarchy and the incentive pay for a sample of top executives in the Japanese electronics industry. The final section provides some concluding comments.

4 The study that comes closest to doing so is Ke et al. (1999) which compares the CEO pay-performance sensitivity in publicly- and privately-owned insurance companies. They find that pay-performance sensitivity is significantly smaller in privately-owned insurance firms, suggesting that the CEO’s of such firms may be monitored not only by the firms’ financial performance, but also through the direct monitoring by large shareholders.
2. A two-period model: ‘pure’ tournament

Assume that individuals are equally talented and that they work for two periods (denoted $t = 1, 2$). Each agent belongs to one of two generations. At any point in time, individuals of both generations are employed. In the present context, this enables us to analyze the actions of a representative individual in isolation from individuals in different generations. It also implies a form of internal hierarchy within each firm.

In period 1, there are two contestants, or mid-level managers, who compete for the position of CEO. The incumbent CEO retires at the end of period 1. In period 2, one of the contestants is declared the winner and promoted. The loser could choose to leave the firm or to stay with the firm in a non-aspirant, non-executive capacity. In the former case, the implied game structure typifies what is termed an ‘up-or-out’ employment contract. However, in what follows, we assume that the loser chooses to stay with the firm and to not compete to become the next CEO. That is, we assume that the value of staying with the same company exceeds a reservation alternative, which may be motivated by accumulated specific human capital considerations.\(^5\) The basic structure of the game is illustrated in Figure One.

Figure One

The labor market tournament

\[
\begin{array}{c|c|c}
\text{Period 1} & \text{Period 2} \\
\hline
\text{Young generation compete} & \text{Winner promoted; loser stays with firm.} \\
\text{Two new competitors enter next tournament.} & \\
\end{array}
\]

The common inter-temporally separable utility function for each contestant is

\[U(y_1, y_2, x_1, x_2) = U(y_1, x_1) + \beta U(y_2, x_2),\]

where subscripts designate the time period, x is

\(^5\) We leave aside the implications this assumption may have for firm growth, see O’Flaherty and Siow (1992, 1995).
effort supplied, y is consumption or income and $\beta \in (0,1]$ is the rate of time preference. We assume that $U_{x_t} < 0$, $U_{x_t y} < 0$, $U_{y_t} > 0$ and $U_{y_t y} \leq 0$, for $t = 1,2$. The firm is perfectly competitive and offers agents contracts guaranteeing at least the reservation utility level.

First, consider the second stage of the game, where there is an already determined winner and loser. We assume that workers are constrained to work at least x_L in the second period as a condition of payment. The latter assumption is important and we discuss it at greater length below.

For simplicity, let i and j be the indices of two opponents. (We leave aside the issue of the optimal number of ‘contestants.’) Let x_i and x_j denote i’s and j’s intensity of effort, respectively. Letting V_{ij} represent the value to worker i playing against an opponent j, a general formulation for the problem is to choose x_1 and x_2 to maximize

\[(1) \quad V_{ij} = \left\{P(wins)[U(W, x_i) + \beta U(W + \delta, x_2)] + P(loses)[U(W, x_i) + \beta U(W, x_j)]\right\}.\]

Note that W and $W + \delta$ are mid-level manager and CEO and fixed salaries, respectively. Hence, δ is the additional salary or ‘prize’ received by the winner of the tournament; it also indexes the degree of pay inequality within a hierarchically organized enterprise.

In period 2, both workers will always choose the minimum effort level in the second period. That is, $x^*_2 = x_L$ since, in the simple game described thus far, there exists no mechanism by which to increase effort above minimum (mutually verifiable) levels.

Define $P(wins) = P_i(x_i, x_{j})$ as the probability that player i succeeds over player j. Further, value is defined as wealth rather than utility. This is a useful simplifying assumption since it avoids speculation on the form of the restrictions on the utility function.
Since both the winner and loser set x_L in period 2 then, by substitution into equation (1), the value function for a risk neutral contestant can be represented as follows:

\[V_j = (1 + \beta)W - c(x_{it}) - \beta c(x_L) + P_i \beta \delta , \]

where $c(.)$, the cost of effort function, is assumed convex and increasing.

The first order condition assuming an interior solution is (i.e., maximizing V_j with respect to x_{it})

\[- c'(x_{it}) + \beta \delta \left(\frac{\delta P}{\delta x_{it}} \right) = 0 . \]

To illustrate how the optimal compensation structure is determined, assume that the output of agent i conditional upon his effort is described by

\[q_{it} = x_{it} + \epsilon_{it}, \]

where for $t = 1, 2$, ϵ_{it} is a random measurement or monitoring error. Given that the agent with greater period 1 output wins the contest, the probability that agent i wins is

\[P_i = \text{Prob}(q_{i1} > q_{j1}) = \text{Prob}(x_{i1} + \epsilon_{i1} > x_{j1} + \epsilon_{j1}) = \text{Prob}(x_{i1} - x_{j1} > \xi_{i1}) = G(x_{i1} - x_{j1}), \]

where $\xi_{i1} = (\epsilon_{j1} - \epsilon_{i1})$, the difference in observational errors, has density $g(.)$ and c.d.f. $G(.)$, with $E\xi_{i1} = 0, G(-\xi_{i1}) = G(\xi_{i1})$, and $G(0) = \frac{1}{2}$.

The optimal compensation contract can be shown to be (see Appendix)

\[\{W^*, \delta^*\} = \left\{ \frac{M}{1 + \beta} \left(\frac{(\delta^* + \beta x_L) - 1}{2g(0)} \right), \frac{M}{\beta g(0)} \right\}, \]

where M is the output price. Clearly, both δ^* and W^* are cyclical, i.e., they are increasing in M. Also, δ^* decreases in β. Hence, the tournament is ‘diluted,’ if agents discount the

6 By focusing on risk neutral workers we eschew the issues dealing with the insurance aspects of different compensation schemes. For the impact of this assumption in the context of tournament schemes, see Lazear and Rosen (1981); for a more general discussion, see Gibbons and Waldman (1999).
future less heavily. Alternatively, if the future becomes less certain, the tournament has to be given greater weight to bolster worker incentives in the first period of the game. Finally, the tournament reflects the importance of monitoring worker effort levels in period 1. Since \(g(0) \) is non-increasing in the variance of \(\xi \), then greater uncertainty over first period effort levels increases the importance of the tournament compensation structure. Finally, the larger is the prize, the smaller is the first period wage. The tournament pay scheme essentially acts as a bonding scheme and shifts total expected lifetime pay to the second period.

3. The two-period tournament model with performance bonuses

Due to the lack of contractual enforceability, an undesirable feature of the ‘pure’ tournament model is that the second period effort levels of the winner and the loser are never set above \(x_L \), the minimum verifiable level. In this section, we show that after the workers’ output capabilities have been revealed in a tournament, an efficient (although not necessarily unique) solution involves the use of performance-based incentives for the CEO.

Increased period 2 effort may be motivated by increased shareholding or profit-sharing, or a pension or bonus payable in a third period, or any form of deferred compensation that can be effectively tied to period 2 performance. As Garen (1994) notes, agency considerations play a central role in setting executive compensation. To state the obvious, unless the firm can institute a ‘perpetual’ tournament, some additional incentive is required to resolve the end-period problem and spur the eventual winner’s effort. We now introduce performance-based compensation into the pure tournament of the previous section.

Define \(x_{w} (\alpha) \) as the winner’s effort level over-and-above \(x_L \) in period 2, which in turn depends upon \(\alpha \), the share of residual income. We assume that this ‘marginal effort’ function is both non-stochastic and common knowledge to both the agent and the principal. At this stage, we leave aside description of the optimal contract and denote the period 2
residual income of the firm by Π_2. We assume that the function x_w is increasing and strictly concave in α, with $x_w(0) = 0$. The principal announces the contract, $\{W, \delta, \alpha\}$, ex ante. This essentially ties down all second period variables in that the loser still automatically provides x_L (nb., we continue to assume that he stays).\(^7\)

To the extent that $x_w(\alpha)$ is known, alteration of the composition of first prize to part relative performance and part profit-contingent may deter potential malfeasance in period 2. In fact, the type of mechanism used to spur CEO effort depends critically upon observability and monitoring conditions. For example, if it is impossible for employees to verify an employer’s observation of their output, then a third period bonus or lump-sum payment may be preferable to residual income sharing, as Malcomson (1984) notes. This would be tantamount to adding another round to the tournament. In addition, profit sharing is a rather blunt weapon to handle the problem at hand, in that it may not stimulate individual effort when profits result from the joint nature of production. Alternatively, if explicit knowledge of $x_w(\alpha)$ is formed, then it makes sense to base compensation on α in some way.

Practically speaking, we note two possible rationales for knowledge of $x_w(\alpha)$ to be acquired. First, there is a tournament that reveals contestants’ capabilities, and secondly, if an incumbent CEO has a ‘significant’ shareholding or continued financial interest in the firm, he takes a more active interest in his successor.

To illustrate how effort may be increased in period 2, we focus on the fraction of the profits awarded to the CEO, α. As in the last section,

\[
V_{ij} = \{P[U(W, x_i) + \beta U(W + \delta + \alpha \Pi_2, x_2)] + (1 - P)[U(W, x_i) + \beta U(W, x_2)]\}
\]

\[
= (1 + \beta)W - c(x_i) - \beta c(x_L) + \beta P(\delta + \alpha \Pi_2 - R(\alpha)),
\]

\(^7\) We do not explicitly model the payment of a performance bonus to the loser as well. On the one hand, our focus is top executive compensation and, on the other hand, α may be interpreted in relative terms as the proportionally higher bonus paid to the winner.
where we have assumed that \(c(x_2) = c(x_L + x_W) = c(x_L) + R(\alpha) \). \(R(\alpha) \) denotes the cost of the extra effort induced by the promised share of residual income, it is assumed to be an increasing and strictly convex function of \(\alpha \), with \(R(0) = 0 \).

Second period profits (i.e., after a winner has been declared) are

\[
\Pi_2 = M (2x_L + x_W) - 2W - \delta - A(\alpha),
\]

where \(A(\alpha) \) represents the alignment costs to the extant owners of the firm of excessive profit-dependent compensation for the manager. To ensure interior solutions we assume that \(A(.) \) is increasing in \(\alpha \) with \(A(0) = 0 \). The alignment costs may be manifested by an under-investment in risky assets and excessive managerial firm-specific risk aversion (from the outside shareholders’ point of view), for instance. In addition, ‘excessively’ tying the interests of managers and shareholders may increase costs of maintaining the implicit value of stakeholder contracts.\(^8\)

We examine second period strategies by first considering the ‘loser.’ Clearly, the loser of the contest obtains utility \(W - c(x_L) \), some fixed value of utility with certainty. In period 2, the loser provides the minimum verifiable amount of effort, since effort provides disutility. The following results would not be tangibly affected by having the loser leave the firm in period 2.

Now consider the ‘winner’ or incoming CEO. His second period strategy is to choose period 2 effort to maximize

\[^8\] Marcus (1982) discussed a number of instances where conflicts of interests between managers and owners raise alignment or agency costs when managers are compensated with shares in the firm that they cannot, or are not allowed to, diversify. However, there exists a critical level of \(\alpha \) beyond which \(A' < 0 \), since, by definition, the alignment costs associated with share ownership disappear when \(\alpha = 1 \). On the other hand, the delegation literature takes seriously the possibility that it may pay the firm to select a compensation package for its top executives that effectively severs ownership and control (e.g., Fershtman and Judd, 1987; Brander and Poitevin, 1992; Garvey and Gaston, 1997; and Gaston, 1997).
\[V_w = W + \delta + \alpha \Pi_2 - c(x_2). \]

The winner will choose second period effort such that \(\alpha M = c'(x'_2) \), i.e., the winner sets his effort such that the marginal private return equals the marginal private cost. Clearly, effort increases in \(\alpha \). Also, note that \(c'(x_2)(\partial x_2 / \partial \alpha) = c'(x_2)x_w(\alpha) = R'(\alpha) \), which implies that \(\alpha Mx'_w(\alpha) = R'(\alpha) \).

From equation (7), the first-order condition with respect to first period effort for the agent is (assuming interior solutions and a symmetric equilibrium)
\[\beta \Delta g(0) = c'(x'_1). \]

where \(\Delta = \delta + \alpha \Pi_2 - R \). First period effort, \(x_1 \), is increasing in \(\Delta \). When \(\alpha = 0 \) the solution reverts to the pure tournament case considered in the last section. Alternatively, if \(\delta = 0 \) the prize takes the form of incentive pay only. (In fact, there is nothing to restrict \(\delta^* \) to be strictly positive.) Since \(\alpha^* \) is set by the principal to resolve the second period incentive problem, then \(\delta^* = \Delta^* - \alpha^* \Pi_2 + R(\alpha^*) \), with \(\Delta^* \) given by equation (10).

Competition ensures that an efficient two period contract equates total expected compensation and total expected output, i.e.,
\[E(\Pi_1 + \beta(1 - \alpha)\Pi_2) = 0. \]

The principal’s maximization problem involves choosing a contract, \(\{W, \delta, \alpha\} \), that maximizes a worker’s expected utility evaluated at its equilibrium values. In order to characterize this contract we substitute equation (11) into equation (7), i.e., the optimal contract maximizes
\[V = Mx_1 + \beta M \left(x_1 + \frac{x_w(\alpha)}{2} \right) - c(x_1) - \beta c(x_1) - \frac{\beta}{2} (A(\alpha) + R(\alpha)). \]

Assuming interior solutions we have
\[
\frac{\partial V}{\partial W} = (M - c'(x_i)) \frac{\partial x_i}{\partial W} = 0
\]
\[
(13) \quad \frac{\partial V}{\partial \delta} = (M - c'(x_i)) \frac{\partial x_i}{\partial \delta} = 0, \text{ and}
\]
\[
\frac{\partial V}{\partial \alpha} = (M - c'(x_i)) \frac{\partial x_i}{\partial \alpha} + \frac{\beta}{2} (Mx_w' - A' - R') = 0.
\]

The first two conditions imply that \(M = c'(x_i^*) \), so that the first period tournament is socially efficient. The third condition implies that

\[
(14) \quad Mx_w'(\alpha^*) = A'(\alpha^*) + R'(\alpha^*).
\]

Hence, \(\alpha \) is set so that the marginal social benefit equals its marginal social cost, i.e., the game is socially efficient in both of its stages. Recall from equation (9) that the winner determines his effort from \(\alpha Mx_w = R' \), hence, equation (14) can be rewritten as

\[
(15) \quad (1 - \alpha^*)Mx_w'(\alpha^*) = A'(\alpha^*).
\]

In determining \(\alpha^* \), the firm takes into account the increased alignment costs of performance-related compensation for the new CEO. If these added costs are negligible, then efficiency dictates that \(\alpha^* \) is closer to 1. In fact, as is well known, the absence of alignment costs associated with managerial shareholding implies that an optimal response is to sell the firm (or to rent the productive non-labor assets) to a risk neutral agent. Of course, observed practice certainly suggests otherwise, hence, either executives are extremely risk averse or the alignment and agency costs of managerial ownership are non-trivial.

Finally, we summarize the key results and comparative statics of the optimal compensation contract. The first Proposition deals with provision of first period incentives and the second Proposition deals with provision of second period incentives, i.e., given the need to provide first-period incentives. (Proofs are in the Appendix.)
Proposition 1 – First period incentives: The optimum prize differential, Δ^*, rises in the output price and the rate at which workers discount the future, and falls with improved monitoring of first period workers.

Proposition 2 – Second period incentives: (i) Given the optimum prize differential, executive bonus pay and direct salary are inversely related; (ii) any factor which reduces the second period incentive problem, such as improved monitoring, will leave unchanged the size of the prize, but will be associated with lower performance-related pay and a higher direct salary for the winner.

The main finding of Proposition 1 indicates that improved monitoring of workers, i.e., at levels of the corporate hierarchy below the very top level, will reduce the importance placed on tournament-based incentives. Proposition 2 states how the monitoring of the eventual winner of a promotion tournament affects the performance-related compensation and the degree of pay inequality within the organization.

Proposition 2 also shows that, from the viewpoint of mid-level managers, increased shareholding or incentive pay and direct salary or cash compensation are substitutes. The optimum prize differential is set by the firm to provide optimal effort incentives for first period workers. Ex ante, the composition of the prize is irrelevant due to the risk neutrality assumption. However, from the firm’s point of view, profit-sharing and the tournament are complementary incentive devices that address quite different problems. The size of the pay increase upon promotion reflects the provision of tournament or first period incentives only. The performance-related component of pay, however, reflects the need to provide second period incentives. However, note that the use of performance pay, in lieu of direct salary, is not costless and exists only when the alignment costs of profit-dependent compensation are low, or alternatively, the costs of monitoring executive effort are high.
4. Confronting empirical realities: The determinants of executive pay in Japan

A. Executive bonuses in Japan. In order to provide evidence that sheds light on the tournament and agency implications for the compensation of upper-level management, we focus upon top executive compensation in Japan. Japanese executive pay characteristically takes two forms – direct salary and performance-related bonuses. In addition, international comparisons of executive pay reveal that the compensation of Japanese executives is disproportionately weighted towards direct salary suggesting the importance of tournament structures within large firms with internal hierarchies (see Murphy, 1999, p.2495, Figure 4).

One of the most important characteristics of Japan’s wage system is the role played by bonuses. Many employees, both white collar and blue collar, receive about 20 percent of their total compensation in the form of bonuses (see Hart and Kawasaki, 1999). There have been several hypotheses to explain the Japanese bonus system.

Hashimoto (1979) develops a model in which increased on-the-job training leads to a higher bonus-to-wage ratio. Using data from the Basic Wage Census and Monthly Survey he finds that tenure and firm size are positive and significant determinants of the bonus-wage ratio. In Hashimoto’s model tenure proxies for specific human capital accumulation. Similarly, employees in large firms tend to have more firm specific human capital.

Some scholars argue that the Japanese wage system is a form of “profit sharing” which serves to maintain employment levels (Weitzman, 1984; Freeman and Weitzman, 1987). In other words, rather than laying off workers when economic conditions deteriorate, employers can reduce labor costs by lowering bonuses. Using industry level data for 1958 to 1983, Freeman and Weitzman (1987) find that bonuses were far more sensitive to profitability than were regular wages. Studies such as these suggest that bonuses are far more flexible than regular pay.
In addition, it is important to note that bonuses paid to directors are more flexible than the bonuses paid to employees. Using grouped data for 1955 to 1986, Ono (1989) finds that directors’ bonuses are more than twice as responsive to changes in corporate profitability than are employees’ bonuses. Moreover, while the ratio of total compensation paid as bonuses to employees showed a slight downward trend for the period 1988 to 1995 (see Hart and Kawasaki, 1999, e.g.); for the same time period, the bonus ratio declined sharply for the directors in the sample used for our empirical analysis below.

Nakamura and Nakamura (1991) construct a multistage model in which the ratio of bonus to total salary paid rises for workers with more qualifications. Using grouped wage data for 1974 and 1984, they find that tenure and qualifications are more important for bonuses than for regular wages. Similar results are found by Nakamura and Hübler (1998), who estimate the determinants of regular pay and the bonus-to-total salary ratio for Japan, Germany, and the United States. They argue that their results are consistent with agency theory. Specifically, in a manner similar to that exposited in our paper, performance-sensitive pay is used when it is more difficult to monitor employees. Managers in higher ranks are considered to conduct more complex tasks than employees in lower ranks; consequently, the proportion of performance pay rises with rank and qualifications.

B. The empirical model. The main implication of the model developed in the previous two sections is that executive compensation is likely to reflect the need to resolve two distinct incentive problems. The difficulty in directly monitoring or verifying the efforts of first period workers suggests that a significant part of top executive pay comprises a prize component. Further, classic agency considerations suggest the need to shift the composition of executive pay towards performance-related or bonus pay rather than direct salary.
We test two predictions of our model below. First, the argument that the main bank helps monitor the firm’s activities suggests that the need for a tournament to resolve worker incentive problems is attenuated. Secondly, not only does the need to provide incentives to top executives increase the sensitivity of pay to performance but also, as a corollary, the importance of total performance-related pay for executives will increase relative to the direct salary component of compensation. Improved monitoring of top executives will therefore reduce the sensitivity of pay to firm performance as well as the pay gap between total compensation paid and the wages paid at lower levels of the firm’s internal hierarchy.

These considerations suggest estimation of the following model.

\[Y = \alpha_0 + \alpha_1 P + \alpha_2 X_1 + \alpha_3 X_2 + \varepsilon, \]

where \(Y \) denotes the vector of dependent variables, i.e., \(\text{Paygap} \) and \(\text{Bonus ratio} \). \(\text{Paygap} \) is calculated as ratio of the directors’ average total compensation and average employee wages. It is our proxy for the winner’s prize, \(\Delta \), and reflects the need to resolve the first period moral hazard problem. For each director, \(\text{Bonus ratio} \) is measured as the ratio of bonus pay to total compensation. In terms of the theoretical model, this variable reflects the need to address the second period moral hazard problem.

\(P \) denotes the firm performance variable. The preferred measure is the rate of return, however, we also report estimates using profits before tax in the sensitivity analysis. \(X_1 \) denotes the vector of variables that affect the tournament. Most notable is the probability of promotion or structure of the firm’s hierarchy. In order to provide first period incentives, a low probability of promotion must be ‘compensated’ with an even larger prize (see Rosen, 1986). The result that the prize increases in the number of equally able contestants can be readily seen from inspecting either equation (1) or equation (7). As the probability of winning falls, to ensure an optimal effort level by all contestants, regardless of the eventual outcome, the prize for winning must rise. We use two proxies. One proxy measures
whether either the president (shacho) or the chairman (kaicho) has been internally promoted or not. The idea is that if a firm hires its chief executives from outside, then this effectively lowers the probability of an internal promotion, hence the pay gap must rise to maintain first period incentives. We also use the ratio of executives to total employees, as suggested by Xu (1998), a more direct measure of the promotion probability. By construction this variable is closely related to firm size. Of course, larger firms have larger and more developed internal hierarchies (see Ariga et al., 1992). Firm size is invariably one of the most important determinants of all the various components of executive pay (see Murphy, 1999 and Oi and Idson, 1999). We use the natural logarithm of sales as well as total assets as alternative measures of firm size.

The final variable in X_1 is the measure of the importance of the main bank relationship, MB. Recall that it has been argued that the main bank has played a major role in monitoring companies. By extension, if this is the case, then monitoring by main banks should help resolve the first period and second period agency problems. In other words, firms without main bank relationship may require other incentive mechanisms, such as tournaments and agency contracts, to motivate employees and executives.9

X_2 denotes the vector of variables that affect the second period incentives. We include a variable that indicates the presence of at least one bank appointee on the Board of Directors, B. This variable is intended to capture monitoring of top executives only. The

9 The main bank dummy is from Hanazaki and Hachisuka (1997). In their study, a main bank relationship exists if all of the following conditions are satisfied:

a. The same bank provides the largest single proportion of the firm’s borrowing from private financial institutions in 1981, 1985, and 1990;

b. The coefficient of variation of the proportion of the largest lending bank in firm’s borrowing is less than 20 during the period 1981 to 1990;

c. The shareholding of the largest lending bank, together with its affiliated banks, exceeds five percent.
Boards of Directors of large Japanese firms may have one or more bank appointees. Such appointees are hypothesized to monitor the behavior of the firm’s top executives. While there has been considerable debate on the effectiveness of bank monitoring on corporate performance, there have been far fewer empirical studies about how these monitors affect the incentives of the firm’s top executives.

Finally, we include \(S \), the director’s holdings of the company’s shares. If a top executive’s interests are already closely aligned with those of the firm’s shareholders, then this will also reduce the sensitivity of pay to firm performance. Thus, in terms of the provision of second period incentives, our theory suggests that directors’ compensation is more closely linked to a firm’s performance when it is difficult to observe the behavior of top executives or when a director’s interests are not aligned with those of the firm’s shareholders.

Until 1997, it was illegal for Japanese companies to use stock options to compensate their executives. Therefore, it is highly unlikely that the directors received shares as a part of their total compensation package. However, some companies have encouraged directors to own their stock. In addition, it may be the case that directors establish their own stock ownership schemes to purchase the firms’ shares. Coupled with this is the fact that it is difficult for directors to trade actively in their own companies’ shares due to insider trading regulations. Notwithstanding, it is unclear whether a high \(S \) signals the presence or absence of an agency problem, i.e., whether it is a complement or substitute for improved monitoring.

C. The Data. The data cover 55 listed companies in the electronics industry for the time period from 1989 to 1999. Employing data on publicly-listed companies in the electronics industry alone has several advantages. First, focusing on one industry enables us to control for any time-varying industry effects on pay-performance sensitivity. In theory, at least, all firms within the given industry have been subject to the same demand-side and
supply-side shocks. Secondly, compared to other industries, the Japanese electronics industry has been relatively free from regulation.

Most of the data, including that for directors’ base pay and bonuses, are from the *Nikkei* database. (In turn, these data are from companies’ annual reports.) The data on each company’s board structure are from *Toyo Keizai Yakuin Shikihou* (the Directory of Directors). Amongst other things, this directory indicates the organization from which each director comes, i.e., whether they have been internally promoted. Data on other variables, such as share prices, are taken from the *Worldscope* database.

One of the difficulties in analyzing executive compensation in Japan is that companies do not disclose the exact amount of each director’s remuneration. Neither company law nor stock market listing rules require companies to disclose such information. However, firms do disclose the total amount of directors’ base pay and bonuses as well as the number of directors, accordingly, the directors’ average base pay and average bonus are available for each company.

Table 1 contains the basic descriptive statistics of the variables used for our empirical analysis. *Bonus ratio* ranges from zero to approximately one half of total compensation for each director. The number of companies with at least one director from a bank comprises about one half of the sample and about one third of the firms have a main bank relationship. Interestingly, the correlations in table 1 reveal that, while positive, the correlation between the presence of a bank appointee on the Board, *B*, and whether there is a main bank relationship, *MB*, is just 0.29.

An informative breakdown of our data, where the descriptive statistics are classified by *B* and *MB*, is given in table 2. One of the more striking features is the apparent difference in the structure of directors’ compensation between companies with and without
bank directors. *Paygap* and the *Bonus ratio* are larger for the companies without bank directors and the *Paygap* is bigger in companies without main bank relationships. Superficially, at least, this lends support to important features of the model developed above. However, as we show below, the same pattern of results continues to hold in a multivariate regression setting.

[Insert table 2]

D. The findings. Random effects estimates for equation (16) are displayed in table 3. Overall, despite the obvious level of abstraction, we consider that our theory of executive compensation fares reasonably, at least as judged by the coherence of the signs of the coefficient estimates to the hypothesized sign patterns.

[Insert table 3]

Better financial performance of the enterprise leads to higher incentive and bonus pay. This was expected, of course, any other result would have been theoretically indefensible. The structure of the firm’s hierarchy, and the proxy for the unconditional probability of promotion, is strongly negatively related to *Paygap*. On the other hand, whether top executive appointments are made externally or not seems to be unimportant. Interestingly, the effect of firm size has no effect on *Paygap*. However, as predicted the coefficient

An advantage of random effects estimation is that it helps to preserve degrees of freedom. More substantively, the main bank relationship does not vary much over time. Therefore, our results show that the main bank effect is consistent with the monitoring role posited by our theory or that those firms that happen to have main bank relationships have lower tournament pay. On the other hand, the measure of promotion probability is highly negatively correlated with various firm size measures. Hence, given the importance of size for various compensation measures, it could be argued that our finding simply confirms the well-known size-compensation correlation. However, Ariga et al. (1992) document the fact that across many Japanese industries there is a stable positive correlation between ‘span of control,’ their measure of a firm’s internal hierarchy, and relative wages. In addition, they note the high positive correlation between span of control and firm size. Note that the signs of all estimated coefficients are robust to using a different measure of firm size and
estimates for the promotion probability and firm size are completely the opposite for _Bonus ratio_, i.e., the promotion probability has no effect, but firm size is very important.

The estimates for the promotion probability are indicative of the importance of tournaments and internal hierarchies within Japanese firms. The findings generally support Xu’s (1997) findings. Our estimated pay gap elasticities are smaller, which is not terribly surprisingly given the dissimilarity of our samples (Xu’s sample covers an earlier time period than ours and includes firms in the general machinery industries). For example, a ten percent increase in the promotion probability lowers _Paygap_ by 1.6 percent (i.e., -2.90 × (1.22/2.27)). Based on far more parsimonious model specifications, and using outside reservation wages in lieu of firm wages to calculate the pay gap, Xu’s estimates are between 4.3 and 5.3 percent. Notwithstanding, both sets of findings support the view that the magnitude of executive pay in Japan is strongly linked to the provision of tournament incentives.\(^{12}\) That is, a large part of executive rewards represent a ‘prize’ for having won a succession of promotion tournaments and a long tenure with the firm, i.e., a reward for ‘past deeds’.

The findings for the existence of a main bank relationship and of a bank-appointed director on the Board are of particular interest. Supportive of our theory’s predictions, the presence of a bank appointee on the Board of Directors tends to reduce pay performance to dropping log sales from the main regression specification (see Appendix table 1). In the latter case, note that the promotion probability increases in its economic significance.

\(^{12}\) Two potential caveats on this interpretation are noted by Kato (1997). First, Japanese publicly-held corporations tend to under-report the salary of directors in corporate proxy statements. Further, this under-reporting may be greater for firms with a larger number of directors. Further, the existence of part-time directors will lower our measures of directors’ compensation. To the extent that the number of full-time and part-time directors is positively correlated with the promotion probability, then the observed negative relationship between the promotion probability and the _Paygap_ could be the result of the under-reporting and part-time biases.
sensitivity for executives (by about 2.5 percentage points). The findings for the main bank variable indicate that the effect of the relationship on executive compensation primarily operates on reducing the importance of the tournament, as was hypothesized above. Per se, the main bank does not affect second period incentives.

The findings for the effects of executives already owning the company’s shares on executive compensation are insignificant. It was hypothesized above that such shareholdings could reduce the second period incentive problem in that potential agency conflicts should be ameliorated. If such is the case, greater executive shareholdings should reduce the importance of incentive pay. On the other hand, greater shareholdings could reflect the existence of potential agency problems that are being inefficiently addressed by shareholding. In fact, there is no real support for either view. This is not surprising for at least two reasons. First, share ownership by top executives in their own firms has not been a prominent feature of either executive compensation schemes or traditional corporate governance mechanisms. Secondly, and as a corollary, share ownership by executives is minuscule in our sample (1.8 percent on average). Accordingly, share ownership of such proportions is unlikely to be able to adequately address potential agency conflicts.

E. More on the role of Bank-appointees. An increasingly common view is that bank monitoring in Japan was poor or that poorly performing firms sought the intervention of their main bank. Kaplan and Minton (1994) and Morck and Nakamura (1999) find that banks are more likely to have one of their employees serve as a director when a company is in financial distress. Accordingly, it could be argued that the bank director variable captures the effects

13 An alternative, although qualitatively similar, interpretation of this finding is that bank-appointed Board members maximize a weighted sum of the firm’s profit and the main bank’s desire to have its loans repaid. See Weinstein and Yafeh (1995, 1998). Hence, the pay-performance relationship may be weaker in firms with a main bank relationship due to bank-appointees having the primarily the interests of the main bank at heart.
of negative financial performance and therefore, like lower profits, should be associated with lower executive compensation. However, recall that the unconditional correlations between either MB or B and measures of profitability and performance are insignificantly different from zero.14 Hence, the negative coefficients on both variables are not simply picking up a poor financial performance effect. Moreover, we controlled for firm performance in the regression specification.

Moreover, in our sample of firms, companies without bank directors do not outperform companies with bank directors. As noted, average profits and performance are marginally higher in the latter. Thus, for firms in the Japanese electronics industry at least, it is not a simple matter of firms with bank-appointed directors performing poorly and hence, paying less. The descriptive statistics in table 2 and the regression results in table 3 are therefore not inconsistent with the significant positive relationship found between bank control rights and German firm performance (see Gorton and Schmid, 2000).

Notwithstanding, it is still possible that poorly-performing firms with low directors’ pay have a bank-appointed director on their Boards. Furthermore, if firm performance does improve it may be that executive pay only increases after some sustained period of improved firm performance. To investigate the potential for this “timing issue” to bias our results we estimated panel probit regressions for the presence of a bank appointee on the Board, B, on contemporaneous and lagged measures of corporate financial distress. LR tests determined that none of the lags were statistically significant. Regressing B on contemporaneous financial distress yielded a weakly significant negative coefficient (p = 0.087). Thus, for our sample of electronic firms, B does not capture a financial distress effect.

14 The Pearson correlation coefficient between the existence of a bank appointee on the Board of Directors and the rate of return is just -0.04 and that between the main bank relationship and rate of return is -0.04 (see table 1). (The correlation coefficient between B and profits before tax is +0.04 and that between MB and profits before tax is +0.01.)
F. Further sensitivity analysis. The sensitivity of our results can be gauged by the robust sign pattern of the coefficient estimates for the key variables in alternative model specifications. See Appendix table 1. For example, in order to examine the effect of alternative measures of profitability, we use the firm’s profit before tax in column (1). The same pattern of results continue to hold; in fact, the effect of the promotion probability on Paygap and the effect of the bank-appointed Board member on Bonus ratio both strengthen.

In column (2), we replace sales by assets as an alternative measure of firm size, and once again, the results are virtually identical to those reported in table 3. In column (3), we examine the key results when the firm size variable is excluded from the Paygap regression and the promotion probability is excluded from the Bonus ratio regression. The latter specifications were estimated due to a concern that large firms are more profitable and are likely to have smaller promotion probabilities. The last column, reports the models which LR tests indicate best fit the data.

To provide an overview, the most important determinant of both Paygap and Bonus ratio is corporate performance. The size of Paygap mainly reflects the need to provide incentives for workers throughout their career with the firm. In this sense, the probability of promotion is the most crucial determinant of Paygap. Main bank monitoring is also found to be an important (and robust) although somewhat weaker determinant. This finding therefore runs somewhat counter to the recent research that argues that banks were, at best, passive monitors of firms in which they had a financial stake.

The size of the Bonus ratio reflects the provision of incentives to top executives once they have progressed through the tournament phase of their careers. The most important determinants are firm size and corporate profitability. We find consistent evidence that bank-appointed Board directors reduce the sensitivity of pay to performance for top executives. Hence, bank appointees to Boards of Directors may have been effective
monitors the actions of top executives, thereby reducing the need for forms of incentive compensation that more closely align top executives’ interests with those of the firm’s shareholders.

5. Concluding comments

Executive pay is a popular topic for investigation for labor economists, industrial relations and human resource management specialists. The more recent debate about the nature, and possible excessiveness, of executive compensation is also part of the wider debate concerning the optimal governance of the modern corporation. In this paper, we examined some important features of executive rewards in Japan. Specifically, it was argued that executive pay performs at least two major functions. First, executive compensation represents the winner’s prize or the end product of the successful culmination of a lifelong career with an employer that has involved a series of competitions at various rungs of the corporate ladder. Tournament models have the feature that the structure of executive compensation is not independent of the wages paid to workers at lower levels of the corporate hierarchy.

The other major role of executive compensation is that it should provide adequate incentives to the executives who are at the top of the corporate hierarchy. Agency models show that compensation based on firm performance is a means by which incentives can be provided to executives, once a promotion tournament has been resolved. In this paper, we combined features of both theories to develop a hybrid model of executive compensation structure that is ‘part tournament’ and ‘part principal-agent.’ This seems to be in accord with actual executive compensation schemes, particularly for Japan. Among the model’s key implications were that the existence of an outsider who monitors the firm’s management should lower the sensitivity of pay to firm performance and raise direct salaries for top executives.
In Japan, banks are major stakeholders in corporations and in addition, it has been argued that banks have played an important role as monitors of companies. As Gorton and Schmid (2000, p.7) note, “there is no empirical literature that addresses the issue of the allocation of control rights to the firm across different types of stakeholders.” In part, this paper sought to redress this deficiency. Specifically, we examined the nature of directors’ financial incentives in firms that have main bank relationships and have directors that have been appointed by banks. Among our model’s primary implications was that pay-performance sensitivity is smaller in firms with external monitors. When monitors can observe the behavior of directors, the relative importance of financial performance in executive compensation contracts will be smaller. Furthermore, by reducing financial uncertainty, the existence of a main bank relationship should reduce the importance of tournament-based incentives within firms.

We tested the model’s key implications using panel data for 55 Japanese electronics firms, for the period 1989 to 1999. Overall, we found evidence that both agency and tournament considerations are important for the compensation of top executives. Thus, executive pay – its magnitude, as well as structure, reflect information asymmetries and moral hazard considerations in the entire corporation. However, in large measure, top executive pay in Japan largely reflects the rewards of a long and successful career climbing the corporate ladder. That is, executive pay in Japan is best viewed through the lens of the tournament model, rather than the agency model. In some ways this is not surprising. Japanese corporations are reputed for implicit contracting and the lifetime employment systems for their employees. Tournament models that explicitly incorporate internal labor market structures are therefore likely to be close to the mark.

Among the other interesting findings is that there is some support for the view espoused by some Japanese commentators that bank-appointed members on a firm’s Board of
Directors may actually help to monitor the decisions and activities of top executives. In general, our findings indicate that executive compensation is both smaller and less sensitive to firm performance in those firms with a main bank relationship and/or a bank-appointed member on their Boards of Directors. In addition, in our sample of firms, it is not a matter of firms with bank-appointed directors performing poorly and hence, paying less to all employees including executives. While there may well be other reasons, we have argued that the findings are consistent with a monitoring role being performed by banks. Hopefully, our findings contribute to an understanding of the issue of whether the close links that Japanese firms ‘enjoy’ with their bankers has been a blessing or a bane. More modestly, we view our paper as yet another step, in what has been a long journey, towards an improved understanding of the determinants of executive compensation.
References

Appendix

A. Derivation of Equation (6)

Note that \(\frac{\partial P}{\partial x_{1i}} = \frac{\partial G(x_{i1} - x_{j1})}{\partial x_{1i}} = g(x_{i1} - x_{j1}) \), so that equation (3) can be written as

\[
(A1) \quad \beta \delta g(x_{i1} - x_{j1}) = c'(x_{i1}).
\]

A symmetric Nash equilibrium implies that \(x_{i1} = x_{j1} = x_1 \), so that

\[
(A2) \quad \beta \delta g(0) = c'(x_1^*).
\]

Since \(c(.) \) is increasing and strictly convex, effort is increasing in \(\delta \). The firm’s expected profit is

\[
(A3) \quad E\Pi = 2(Mx_1 - W) + \beta(2Mx_L - 2W - \delta).
\]

We assume that firms are risk neutral and part of a competitive economy. Consequently, expected profits are zero, i.e.,

\[
(A4) \quad M(x_1 + \beta x_L) = (1 + \beta)W + \frac{\beta \delta}{2}.
\]

We can substitute the zero profit condition into the first order condition for the contestant to determine \(\{W^*, \delta^*\} \). Combining (A2) and (A4), we have

\[
(A5) \quad W^* = \frac{M(x_1^* + \beta x_L)}{(1 + \beta)} - \frac{c'(x_1^*)}{2(1 + \beta)g(0)}.
\]

Evaluating \(V_{ij} \) at the optimum values and assuming that players are symmetric, so that \(P_i = \frac{1}{2} \), by substituting (A4) into equation (2) we obtain

\[
(A6) \quad V_{ij} = M(x_1 + \beta x_L) - c(x_1) - \beta c(\underline{x}_L).
\]

Since \(\beta c(\underline{x}_L) \) is a fixed cost, differentiating with respect to \(x_1 \) yields: \(M = c'(x_1^*) \), i.e., the tournament results in the first best allocation. Equation (6) follows directly.
B. Proof of Proposition 1

The optimum first prize for a tournament is obtained by combining equations (10) and (13), i.e.,

\[(A7) \Delta^* = M/\beta g(0).\]

This expression is the amount that elicits optimal first period effort by contestants, regardless of what happens during the second period of the game. Clearly, \(\Delta^*\) varies directly with \(M\) and inversely with \(\beta\). Next, recall that \(\xi = (\varepsilon_{jt} - \varepsilon_{jt})\) has density \(g(.)\) and c.d.f. \(G(.)\). High costs of monitoring period 1 effort can be proxied by an increase in the variance of \(\xi\), \(\sigma^2\). For example, if \(\xi\) is uniformly distributed on \((-z, z)\), then \(g(0) = 1/2z\), and \(\Delta^* = 2Mz/\beta\). In general, an increase in the variance of \(\xi\) puts more weight in the tails of \(g(.)\) and decreases \(g(0)\). Since \(\Delta^*\) falls in \(g(0)\), then \(\partial \Delta^*/\partial \sigma^2 > 0\).

C. Proof of Proposition 2

For part (i), the fact that total bonus pay and the prize component of the total direct salary are inversely related follows directly from the definition of \(\Delta\). Part (ii) can be derived by assuming the existence of a monitoring technology with fixed cost, \(m\). In particular, suppose that by incurring \(m\) the firm can institute the performance standard \(x_1^*(m) = x_1 + x_w(\alpha^*)\), with \(\alpha^*\) defined by equation (15). Now consider the following contract

\[(A8) \{W^*, \delta^*\} = \left\{ \frac{M}{1+\beta} \left(x_1^* + \beta x_1 \right) - \frac{1}{2g(0)} + \frac{\beta}{2(1+\beta)} (Mx_w - m) \frac{M}{\beta g(0)} \right\} .\]

Clearly, for \(m\) sufficiently low, the monitoring scheme dominates the compensation scheme associated with performance bonuses, since effort in periods 1 and 2 are the same for the winner and loser and the period 1 wage is higher. In comparison to the pure tournament, the advantage of the monitoring scheme hinges on the cost of additional effort for the winner and the additional upfront payment. If the latter exceeds the former, it follows that the
monitoring solution to the second period incentive problem involves no change in the absolute size of the prize, but higher salaries for workers at all levels of the corporate hierarchy.
Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paygap, Directors' average total compensation ÷ employees’ average wages</td>
<td>2.27</td>
<td>0.74</td>
<td>1.02</td>
<td>7.01</td>
<td>a, b</td>
</tr>
<tr>
<td>Bonus ratio, Directors’ average annual bonus ÷ average total compensation, percent</td>
<td>0.13</td>
<td>0.10</td>
<td>0.00</td>
<td>0.51</td>
<td>a, b</td>
</tr>
<tr>
<td>Rate of return, percent</td>
<td>0.72</td>
<td>0.58</td>
<td>-0.65</td>
<td>2.90</td>
<td>c</td>
</tr>
<tr>
<td>Firm size, log sales, millions of ¥</td>
<td>11.45</td>
<td>1.36</td>
<td>8.15</td>
<td>15.26</td>
<td>a</td>
</tr>
<tr>
<td>Promotion probability, number of directors ÷ number of employees, percent</td>
<td>1.22</td>
<td>1.04</td>
<td>0.03</td>
<td>7.14</td>
<td>a, b</td>
</tr>
<tr>
<td>External promotion</td>
<td>0.28</td>
<td>0.45</td>
<td>0.00</td>
<td>1.00</td>
<td>b, d</td>
</tr>
<tr>
<td>S, Total director shareholdings, percent of total shares</td>
<td>1.76</td>
<td>3.13</td>
<td>0.01</td>
<td>18.72</td>
<td>a</td>
</tr>
<tr>
<td>MB, Main bank relationship</td>
<td>0.31</td>
<td>0.46</td>
<td>0.00</td>
<td>1.00</td>
<td>e</td>
</tr>
<tr>
<td>B, Bank-appointee on Board of Directors</td>
<td>0.51</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>b</td>
</tr>
</tbody>
</table>

Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
<th>e.</th>
<th>f.</th>
<th>g.</th>
<th>h.</th>
<th>i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Paygap</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Bonus ratio</td>
<td>0.35</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Rate of return</td>
<td>0.17</td>
<td>0.24</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Firm Size</td>
<td>0.35</td>
<td>0.40</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Promotion prob.</td>
<td>-0.33</td>
<td>-0.30</td>
<td>-0.01</td>
<td>-0.69</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. External promotion</td>
<td>-0.17</td>
<td>0.03</td>
<td>-0.02</td>
<td>-0.17</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. S</td>
<td>0.03</td>
<td>0.03</td>
<td>-0.01</td>
<td>-0.27</td>
<td>0.13</td>
<td>-0.16</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. MB</td>
<td>-0.08</td>
<td>0.03</td>
<td>-0.04</td>
<td>0.15</td>
<td>-0.15</td>
<td>0.03</td>
<td>-0.12</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>i. B</td>
<td>-0.10</td>
<td>-0.11</td>
<td>-0.04</td>
<td>0.06</td>
<td>0.04</td>
<td>-0.01</td>
<td>-0.02</td>
<td>0.29</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes:

- Total observations = 605; 11 years (1989-99) and 55 firms.
Table 2: Descriptive Statistics classified by Bank-appointee on Board of Directors and Main Bank Relationship

| Variable | $B = 0$ | $B = 1$ | $|t|$ | $MB = 0$ | $MB = 1$ | $|t|$ |
|---------------------------|---------|---------|------|----------|----------|------|
| Paygap | 2.34 | 2.19 | 2.51*** | 2.31 | 2.17 | 2.08** |
| Bonus ratio | 0.14 | 0.12 | 2.82*** | 0.13 | 0.14 | 0.71 |
| Rate of return | 0.74 | 0.70 | 0.87 | 0.74 | 0.69 | 1.03 |
| Firm size | 11.37 | 11.53 | 1.53* | 11.32 | 11.76 | 3.73*** |
| Promotion probability | 1.18 | 1.27 | 1.07 | 1.32 | 1.00 | 3.63*** |
| External promotion | 0.29 | 0.28 | 0.16 | 0.28 | 0.30 | 0.61 |
| Executive shareholding | 0.02 | 0.02 | 0.42 | 0.02 | 0.01 | 3.07*** |
| Main bank, MB | 0.17 | 0.44 | 7.51*** | | | |
| Bank-appointed director, B| | | | 0.42 | 0.73 | 7.51*** |
| Observations | 294 | 311 | 418 | 187 | | |

Notes:
- Data sources, see table 1. Total observations = 605; 11 years (1989-99) and 55 firms.
- Columns 4 and 7: Absolute value of t-statistic for test of difference in means. * (**) *** Significant 10, (5), 1 percent level.
Table 3
The Determinants of Executive Compensation

<table>
<thead>
<tr>
<th></th>
<th>Paygap</th>
<th>Bonus ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypothesized sign</td>
<td>Random effects</td>
</tr>
<tr>
<td>Rate of return, P</td>
<td>+</td>
<td>0.135***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.046)</td>
</tr>
<tr>
<td>Firm size, $\ln sales$</td>
<td>0?</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.056)</td>
</tr>
<tr>
<td>Promotion probability ($\pm 10^2$)</td>
<td>-</td>
<td>-0.290***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.061)</td>
</tr>
<tr>
<td>External promotion</td>
<td>+</td>
<td>-0.086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.080)</td>
</tr>
<tr>
<td>Main bank, MB</td>
<td>-</td>
<td>-0.255*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.143)</td>
</tr>
<tr>
<td>Bank director, B</td>
<td>0</td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.077)</td>
</tr>
<tr>
<td>Executive shareholding, S</td>
<td>0</td>
<td>-1.719</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.386)</td>
</tr>
<tr>
<td>Intercept</td>
<td>.</td>
<td>2.033***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.693)</td>
</tr>
<tr>
<td>R^2 / Log likelihood</td>
<td></td>
<td>0.179</td>
</tr>
<tr>
<td>Wald χ^2 (18)</td>
<td></td>
<td>84.58</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>605</td>
</tr>
</tbody>
</table>

Notes: All regressions include year dummies. * (**) *** Significant 10, (5), 1 percent level.
‡ Tobit random effects estimates. Asymptotic standard errors in parentheses.
Appendix table 1: The Determinants of Executive Compensation, Alternative specifications

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paygap</td>
<td>Bonus ratio</td>
<td>Paygap</td>
<td>Bonus ratio</td>
</tr>
<tr>
<td>Firm performance, P</td>
<td>0.242***</td>
<td>0.083***</td>
<td>0.136***</td>
<td>0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.018)</td>
<td>(0.046)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Firm size</td>
<td>0.051</td>
<td>0.037***</td>
<td>0.079</td>
<td>0.052***</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.009)</td>
<td>(0.058)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Promotion probability ($\times 10^3$)</td>
<td>-0.301***</td>
<td>0.061</td>
<td>-0.278***</td>
<td>0.681</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(1.027)</td>
<td>(0.062)</td>
<td>(0.994)</td>
</tr>
<tr>
<td>External promotion</td>
<td>-0.087</td>
<td>-0.022</td>
<td>-0.085</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.017)</td>
<td>(0.080)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Main bank, MB</td>
<td>-0.251*</td>
<td>0.006</td>
<td>-0.254*</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.025)</td>
<td>(0.142)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Bank director, B</td>
<td>-0.049</td>
<td>-0.030**</td>
<td>-0.027</td>
<td>-0.023*</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.015)</td>
<td>(0.077)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Executive shareholding, S</td>
<td>-1.132</td>
<td>0.227</td>
<td>-1.613</td>
<td>-0.097</td>
</tr>
<tr>
<td></td>
<td>(1.388)</td>
<td>(0.250)</td>
<td>(1.380)</td>
<td>(0.208)</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.209***</td>
<td>-0.235**</td>
<td>1.797**</td>
<td>-0.449***</td>
</tr>
<tr>
<td></td>
<td>(0.716)</td>
<td>(0.112)</td>
<td>(0.726)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>R^2 / Log likelihood</td>
<td>0.174</td>
<td>282.98</td>
<td>0.188</td>
<td>303.85</td>
</tr>
<tr>
<td>Wald χ^2 / LR χ^2</td>
<td>84.51</td>
<td>245.90</td>
<td>85.42</td>
<td>326.74</td>
</tr>
<tr>
<td>Observations</td>
<td>605</td>
<td>605</td>
<td>605</td>
<td>605</td>
</tr>
</tbody>
</table>

Notes: * (**) *** Significant 10, (5), 1 percent level. ‡ Tobit random effects estimates. Asymptotic standard errors in parentheses. Column (1): P = profit before tax (*104); (2) Firm size = ln assets; (3) delete Firm size or promotion probability; (4) shortest model specification selected by series of LR tests.